import torch import torch.nn.functional as F from torch.optim import Adam from torch.utils.data import DataLoader def train_triplet_model(product_model, anchor_data, positive_data, negative_data, num_epochs=10, learning_rate=0.001, margin=1.0): optimizer = Adam(product_model.parameters(), lr=learning_rate) for epoch in range(num_epochs): product_model.train() optimizer.zero_grad() # Forward pass anchor_vec = product_model(anchor_data) positive_vec = product_model(positive_data) negative_vec = product_model(negative_data) # Triplet loss calculation positive_distance = F.pairwise_distance(anchor_vec, positive_vec) negative_distance = F.pairwise_distance(anchor_vec, negative_vec) triplet_loss = torch.clamp(positive_distance - negative_distance + margin, min=0).mean() # Backward pass and optimization triplet_loss.backward() optimizer.step() print(f"Epoch {epoch + 1}, Loss: {triplet_loss.item()}") return product_model