import torch from transformers import BertTokenizer, BertModel from torch.nn import Embedding import numpy as np # BERT 모델 및 토크나이저 로드 tokenizer = BertTokenizer.from_pretrained("klue/bert-base") bert_model = BertModel.from_pretrained("klue/bert-base") # 상품 데이터 임베딩 def embed_product_data(product_data): text = product_data.get("title", "") + " " + product_data.get("description", "") inputs = tokenizer( text, return_tensors="pt", truncation=True, padding=True, max_length=128 ) outputs = bert_model(**inputs) text_embedding = outputs.last_hidden_state.mean(dim=1) category_embedding_layer = Embedding(num_embeddings=50, embedding_dim=16) color_embedding_layer = Embedding(num_embeddings=20, embedding_dim=8) category_id = product_data.get("category_id", 0) color_id = product_data.get("color_id", 0) category_embedding = category_embedding_layer(torch.tensor([category_id])) color_embedding = color_embedding_layer(torch.tensor([color_id])) combined_embedding = torch.cat((text_embedding, category_embedding, color_embedding), dim=1) return combined_embedding.detach().numpy() # 사용자 데이터 임베딩 def embed_user_data(user_data): embedding_layer = Embedding(num_embeddings=100, embedding_dim=128) gender_id = 0 if user_data['gender'] == 'M' else 1 scaled_height = int((user_data['height'] - 50) * 99 // 200) scaled_weight = int((user_data['weight'] - 30) * 99 // 170) age_embedding = embedding_layer(torch.tensor([user_data['age']])).view(1, -1) gender_embedding = embedding_layer(torch.tensor([gender_id])).view(1, -1) height_embedding = embedding_layer(torch.tensor([scaled_height])).view(1, -1) weight_embedding = embedding_layer(torch.tensor([scaled_weight])).view(1, -1) combined_embedding = torch.cat((age_embedding, gender_embedding, height_embedding, weight_embedding), dim=1) return combined_embedding.detach().numpy()