import streamlit as st from transformers import pipeline st.set_page_config(page_title="AI Grammar Assistant", page_icon="📝") st.title("📝 AI Grammar Assistant") st.write("Enter your text below and get instant grammar corrections!") # Load Hugging Face model @st.cache_resource def load_model(): return pipeline("text2text-generation", model="vennify/t5-base-grammar-correction") corrector = load_model() user_input = st.text_area("Your text", height=200) if st.button("Correct Grammar"): if user_input.strip() == "": st.warning("⚠️ Please enter some text to correct.") else: with st.spinner("Correcting grammar..."): try: result = corrector(user_input, max_length=128)[0]['generated_text'] st.success("✅ Corrected Text:") st.write(result) except Exception as e: st.error(f"Something went wrong: {e}") st.markdown("---") st.markdown("Made by [Wanshika Patro](https://github.com/wanshika)")