bi3 / app.py
waniberry66's picture
สร้าง app.py
585121d verified
raw
history blame contribute delete
1.16 kB
import gradio as gr
import numpy as np
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
id2label = {0: 'anger', 1: 'anticipation', 2: 'disgust', 3: 'fear', 4: 'joy', 5: 'love', 6: 'optimism', 7: 'pessimism', 8: 'sadness', 9: 'surprise', 10: 'trust'}
tokenizer = AutoTokenizer.from_pretrained("winain7788/bert-finetuned-sem_eval-english")
model = AutoModelForSequenceClassification.from_pretrained("winain7788/bert-finetuned-sem_eval-english")
async def get_sentiment(text):
encoding = tokenizer(text, return_tensors="pt")
encoding = {k: v.to(model.device) for k,v in encoding.items()}
outputs = model(**encoding)
logits = outputs.logits
logits.shape
# apply sigmoid + threshold
sigmoid = torch.nn.Sigmoid()
probs = sigmoid(logits.squeeze().cpu())
predictions = np.zeros(probs.shape)
predictions[np.where(probs >= 0.5)] = 1
# turn predicted id's into actual label names
predicted_labels = [id2label[idx] for idx, label in enumerate(predictions) if label == 1.0]
return predicted_labels
demo = gr.Interface(fn=get_sentiment, inputs="text", outputs="json")
demo.launch()