File size: 20,498 Bytes
a0ec4a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
# %%
# imports

import os
import json
from dotenv import load_dotenv
from openai import OpenAI
import gradio as gr
import requests
import urllib.parse  
from datetime import datetime

# %%
# Initialization

load_dotenv(override=True)

openai_api_key = os.getenv('OPENAI_API_KEY')
if openai_api_key:
    print(f"OpenAI API Key exists and begins {openai_api_key[:8]}")
else:
    print("OpenAI API Key not set")
    
MODEL = "gpt-4o-mini"
openai = OpenAI()

# %%
system_message = (
    "You are a clinical trials assistant that uses the ClinicalTrials.gov API to answer questions. "
    "If the user asks for study data, you must always call the `search_studies` tool. "
    "Only use your own knowledge for greetings or general questions."
    "Always return detailed and structured responses."
)

# %%
def search_studies(query):
    import urllib.parse
    import requests

    print("\n==============================")
    print(f"[DEBUG] Received query: {query} (type: {type(query)})")
    print("==============================")

    if isinstance(query, dict):
        filters = []
        query_parts = []

        if "query" in query:
            query_string = urllib.parse.quote_plus(query["query"])
            query_parts.append(f"query.cond={query_string}")

        if "phase" in query:
            filters.append(f"AREA[Phase]{query['phase']}")
        if "country" in query:
            filters.append(f"AREA[LocationCountry]{query['country']}")
        if "study_type" in query:
            filters.append(f"AREA[StudyType]{query['study_type']}")
        if "sex" in query:
            filters.append(f"AREA[Sex]{query['sex']}")
        if "age_group" in query:
            filters.append(f"AREA[StdAge]{query['age_group']}")
        if "status" in query:
            filters.append(f"AREA[OverallStatus]{query['status']}")
        if "sampling_method" in query:
            filters.append(f"AREA[SamplingMethod]{query['sampling_method']}")
        if "ipd_sharing" in query:
            filters.append(f"AREA[IPDSharing]{query['ipd_sharing']}")

        if "start_date_from" in query:
            filters.append(f"AREA[StartDate]RANGE[{query['start_date_from']},MAX]")
        if "start_date_to" in query:
            filters.append(f"AREA[StartDate]RANGE[MIN,{query['start_date_to']}]")
        if "completion_date_from" in query:
            filters.append(f"AREA[CompletionDate]RANGE[{query['completion_date_from']},MAX]")
        if "completion_date_to" in query:
            filters.append(f"AREA[CompletionDate]RANGE[MIN,{query['completion_date_to']}]")

        def normalize_sponsor(s):
            for suffix in ["Inc.", "Inc", "Ltd.", "Ltd", "GmbH", "LLC", "Corp.", "Corp"]:
                s = s.replace(suffix, "")
            return s.strip()

        if "sponsor" in query:
            sponsor_name = normalize_sponsor(query["sponsor"])
            sponsor_string = urllib.parse.quote_plus(sponsor_name)
            query_parts.append(f"query.spons={sponsor_string}")

        page_size = query.get("max_results", 3)
        if ("city" in query or "facility" in query) and "max_results" not in query:
            page_size = 30  # ensure enough studies for post-filtering

        filter_advanced = " AND ".join(filters)
        if filter_advanced:
            filter_advanced = f"({filter_advanced})"
        encoded_filter = urllib.parse.quote(filter_advanced, safe="[]*")

        url = (
            f"https://clinicaltrials.gov/api/v2/studies?"
            f"{'&'.join(query_parts)}"
            f"{f'&filter.advanced={encoded_filter}' if filter_advanced else ''}"
            f"&pageSize={page_size}"
        )

    else:
        encoded_query = urllib.parse.quote_plus(query)
        url = f"https://clinicaltrials.gov/api/v2/studies?query.cond={encoded_query}&pageSize=3"

    print("Requesting:", url)

    try:
        response = requests.get(url)
        print("Status Code:", response.status_code)

        if response.status_code == 400 and any("query.cond=" in part for part in query_parts):
            print("[⚠️ Fallback] Retrying with query.text instead of query.cond...")
            query_parts = [p.replace("query.cond=", "query.text=") for p in query_parts]
            url = (
                f"https://clinicaltrials.gov/api/v2/studies?"
                f"{'&'.join(query_parts)}"
                f"{f'&filter.advanced={encoded_filter}' if filter_advanced else ''}"
                f"&pageSize={page_size}"
            )
            print("Retrying:", url)
            response = requests.get(url)
            print("Retry Status Code:", response.status_code)

        if response.status_code == 200:
            data = response.json()
            trials = data.get("studies", [])
            if not trials:
                return "No studies found."

            def matches(study, key, value):
                section = study.get("protocolSection", {})
                if key == "sponsor":
                    return value.lower() in section.get("sponsorCollaboratorsModule", {}).get("leadSponsor", {}).get("name", "").lower()
                elif key == "intervention":
                    interventions = section.get("armsInterventionsModule", {}).get("interventions", [])
                    return any(value.lower() in i.get("name", "").lower() for i in interventions)
                elif key == "city":
                    locs = section.get("contactsLocationsModule", {}).get("locations", [])
                    return any(value.lower() in loc.get("city", "").lower() for loc in locs)
                elif key == "facility":
                    locs = section.get("contactsLocationsModule", {}).get("locations", [])
                    return any(value.lower() in loc.get("facility", "").lower() for loc in locs)
                return True

            for key in ["sponsor", "intervention", "city", "facility"]:
                if key in query:
                    trials = [s for s in trials if matches(s, key, query[key])]

            if not trials:
                return "No studies found after applying filters."

            result = []
            for study in trials:
                ps = study.get("protocolSection", {})
                id_module = ps.get("identificationModule", {})
                design_module = ps.get("designModule", {})
                status_module = ps.get("statusModule", {})
                elig_module = ps.get("eligibilityModule", {})
                ipd_module = ps.get("ipdSharingStatementModule", {})
                desc_module = ps.get("descriptionModule", {})
                contact_module = ps.get("contactsLocationsModule", {})
                sponsor_module = ps.get("sponsorCollaboratorsModule", {})
                outcomes_module = ps.get("outcomesModule", {})
                arms_module = ps.get("armsInterventionsModule", {})

                nct_id = id_module.get("nctId", "N/A")
                title = id_module.get("briefTitle", "No Title")
                official_title = id_module.get("officialTitle", "N/A")
                phases = design_module.get("phases", [])
                study_type = design_module.get("studyType", "N/A")
                status = status_module.get("overallStatus", "N/A")
                start_date = status_module.get("startDateStruct", {}).get("date", "N/A")
                completion_date = status_module.get("completionDateStruct", {}).get("date", "N/A")
                sex = elig_module.get("sex", "N/A")
                std_ages = elig_module.get("stdAges", [])
                sampling_method = elig_module.get("samplingMethod", "N/A")
                criteria = elig_module.get("eligibilityCriteria", "N/A")
                locations = contact_module.get("locations", [])
                countries = sorted({loc.get("country") for loc in locations if loc.get("country")})

                # Format location info (first 2 entries, truncate the rest)
                location_text_lines = []
                for loc in locations:
                    parts = [loc.get("facility"), loc.get("city"), loc.get("state"), loc.get("country")]
                    clean = [p for p in parts if p]
                    if clean:
                        location_text_lines.append(", ".join(clean))
                if location_text_lines:
                    if len(location_text_lines) > 3:
                        display_lines = location_text_lines[:2]
                        location_text = "\n".join(f"- {line}" for line in display_lines)
                        location_text += f"\n...and {len(location_text_lines)-2} more site(s)"
                    else:
                        location_text = "\n".join(f"- {line}" for line in location_text_lines)
                else:
                    location_text = "N/A"

                description = desc_module.get("detailedDescription", "N/A")
                interventions = arms_module.get("interventions", [])
                intervention_names = [iv.get("name", "") for iv in interventions if iv.get("name")]
                intervention_text = ", ".join(intervention_names) if intervention_names else "N/A"
                sponsor = sponsor_module.get("leadSponsor", {}).get("name", "N/A")
                collaborators = sponsor_module.get("collaborators", [])
                collaborator_names = [c.get("name", "") for c in collaborators]

                result.append(
                    f"### πŸ§ͺ {title}\n\n"
                    f"**NCT ID:** `{nct_id}`\n"
                    f"πŸ”— [View on ClinicalTrials.gov](https://clinicaltrials.gov/study/{nct_id})\n\n"
                    f"**Start Date:** {start_date}\n"
                    f"**Completion Date:** {completion_date}\n\n"
                    f"**Official Title:** {official_title}\n"
                    f"**Type:** {study_type.title()}\n"
                    f"**Phase:** {', '.join(phases) if phases else 'Not reported'}\n"
                    f"**Status:** {status}\n"
                    f"**Countries:** {', '.join(countries) if countries else 'N/A'}\n"
                    f"**Locations:**\n{location_text}\n"
                    f"**Interventions:** {intervention_text}\n"
                    f"**Sponsor:** {sponsor}\n"
                    f"**Collaborators:** {', '.join(collaborator_names) if collaborator_names else 'None'}\n"
                )

            return "\n\n---\n\n".join(result).strip()

        return f"API returned error: {response.status_code}"

    except Exception as e:
        print("Exception occurred:", e)
        return "Error fetching study data."

# %%
# There's a particular dictionary structure that's required to describe our function:

search_function = {
    "name": "search_studies",
    "description": "Search for clinical trials with strict filtering on all key metadata fields such as condition, country, phase, study type, sex, age group, sampling method, sponsor, intervention, locations, start dates, completion dates, etc.",
    "parameters": {
        "type": "object",
        "properties": {
            "query": {
                "type": "string",
                "description": "Condition or keyword to search for. (e.g., 'lung cancer', 'IBD')"
            },
            "phase": {
                "type": "string",
                "description": "Clinical trial phase. (e.g., 'Phase 1', 'Phase 2', 'Phase 3')"
            },
            "status": {
                "type": "string",
                "description": "Recruitment status. (e.g., 'RECRUITING', 'COMPLETED')"
            },
            "country": {
                "type": "string",
                "description": "Country where the trial is conducted. (e.g., 'Italy')"
            },
            "study_type": {
                "type": "string",
                "description": "Type of study. (e.g., 'INTERVENTIONAL', 'OBSERVATIONAL')"
            },
            "sex": {
                "type": "string",
                "description": "Sex eligibility. (e.g., 'Male', 'Female', 'All')"
            },
            "age_group": {
                "type": "string",
                "description": "Standard age group. (e.g., 'CHILD', 'ADULT', 'OLDER_ADULT')"
            },
            "sampling_method": {
                "type": "string",
                "description": "Participant sampling method. (e.g., 'PROBABILITY_SAMPLE', 'NON_PROBABILITY_SAMPLE')"
            },
            "intervention": {
                "type": "string",
                "description": "Intervention or treatment keyword. (e.g., 'aspirin', 'TAE')"
            },
            "sponsor": {
                "type": "string",
                "description": "Name of the lead sponsor or organization. (e.g., 'Pfizer', 'NIH')"
            },
            "ipd_sharing": {
                "type": "string",
                "description": "Will individual participant data (IPD) be shared? (e.g., 'YES', 'NO', 'UND')"
            },
            "city": {
                "type": "string",
                "description": "City where the trial site is located. (e.g., 'Chicago')"
            },
            "facility": {
                "type": "string",
                "description": "Facility or hospital name where trial is conducted. (e.g., 'Mayo Clinic')"
            },
            "start_date_from": {
                "type": "string",
                "description": "Earliest start date allowed (format: YYYY-MM or YYYY-MM-DD)"
            },
            "start_date_to": {
                "type": "string",
                "description": "Latest start date allowed"
            },
            "completion_date_from": {
                "type": "string",
                "description": "Earliest completion date allowed"
            },
            "completion_date_to": {
                "type": "string",
                "description": "Latest completion date allowed"
            },
            "max_results": {
                "type": "integer",
                "description": "Maximum number of studies to return"
            }
        },
        "required": ["query"],
        "additionalProperties": False
    }
}

# %%
# And this is included in a list of tools:

tools = [{"type": "function", "function": search_function}]

# %%
def chat(message, history):
    messages = [{"role": "system", "content": system_message}] + history + [{"role": "user", "content": message}]

    # πŸ”„ First attempt: try to stream the LLM output
    response_stream = openai.chat.completions.create(
        model=MODEL,
        messages=messages,
        tools=tools,
        tool_choice="auto",
        stream=True
    )

    full_response = ""
    tool_call_detected = False

    for chunk in response_stream:
        choice = chunk.choices[0]
        delta = choice.delta

        # 🧠 Detect tool call request during stream
        if hasattr(delta, "tool_calls") and delta.tool_calls:
            tool_call_detected = True
            break  # Exit streaming β€” can't continue past tool call

        if delta.content:
            full_response += delta.content
            yield full_response  # Live stream to user

    # 🧰 Tool call fallback (non-streamed)
    if tool_call_detected:
        fallback = openai.chat.completions.create(
            model=MODEL,
            messages=messages,
            tools=tools,
            tool_choice="auto"  # No stream here, required to get tool_calls
        )

        message = fallback.choices[0].message
        print("Finish reason:", fallback.choices[0].finish_reason)
        print("Tool calls:", message.tool_calls if hasattr(message, 'tool_calls') else None)

        # πŸ”§ Call the tool(s)
        tool_responses = handle_tool_call(message)

        # Add the assistant tool call message and all corresponding tool responses
        messages.append(message)
        messages.extend(tool_responses)

        # 🧠 Now ask GPT to summarize the tool result(s)
        final_response_stream = openai.chat.completions.create(
            model=MODEL,
            messages=messages,
            stream=True
        )

        final_output = ""
        for chunk in final_response_stream:
            delta = chunk.choices[0].delta
            if delta.content:
                final_output += delta.content
                yield final_output  # Stream final GPT summary

    # 🧯 Final fallback if nothing streamed
    elif not full_response:
        fallback = openai.chat.completions.create(
            model=MODEL,
            messages=messages,
            tools=tools,
            tool_choice="auto"
        )
        yield fallback.choices[0].message.content

# %%
def handle_tool_call(message):
    import json

    tool_responses = []

    for tool_call in message.tool_calls:
        arguments = json.loads(tool_call.function.arguments)
        result = search_studies(arguments)

        tool_responses.append({
            "role": "tool",
            "tool_call_id": tool_call.id,
            "content": result if isinstance(result, str) else json.dumps(result)
        })

    return tool_responses

# %%
example_prompts = [
    "Show me trials in Taiwan studying Vedolizumab.",
    "List studies for Crohn's disease that started after 2015.",
    "Give me 5 completed trials on lung cancer in Japan.",
    "Provide latest Perennial Allergic Rhinitis study from Eli Lily",
    "Find interventional Phase 3 studies for breast cancer in France.",
    "List observational studies in Thailand with female participants over 65.",
    "Show me trials in United States, Houston, at MD Anderson.",
    "Show studies that started after 2022 for Asthma and are still ongoing.",
    "Show me studies that use HS135 in Canada.",
    "Show me trials that share individual participant data (IPD) in the USA.",
    "Get trial details for NCT06083857.",
    "Find completed prostate cancer trials for adults in Germany.",
    "List Phase 4 trials with probability sampling in South Korea."
]

description = """\
<div style="font-family: sans-serif; line-height: 1.8;">
  <strong>Ask about any of the following criteria to find clinical trials:</strong><br><br>

  <style>
    table.ctg-guide-table, table.ctg-guide-table td {
      border: none !important;
      padding: 6px;
      vertical-align: top;
    }
  </style>

  <table class="ctg-guide-table" style="width: 100%; table-layout: fixed; border-collapse: collapse;">
    <tr>
      <td>🩺 <strong>Medical Conditions</strong><br><small>e.g., 'lung cancer', 'prostate cancer'</small></td>
      <td>πŸ”’ <strong>NCT ID</strong><br><small>e.g., 'NCT01234567'</small></td>
      <td>πŸ§ͺ <strong>Trial Phase</strong><br><small>e.g., 'Phase 1', 'Phase 2', 'Phase 3', 'Phase 4'</small></td>
    </tr>
    <tr>
      <td>🧫 <strong>Study Type</strong><br><small>e.g., 'INTERVENTIONAL', 'OBSERVATIONAL'</small></td>
      <td>πŸ“‹ <strong>Status</strong><br><small>e.g., 'RECRUITING', 'COMPLETED', 'TERMINATED'</small></td>
      <td>πŸ’Š <strong>Interventions</strong><br><small>e.g., 'aspirin', 'HS135', 'Vedolizumab'</small></td>
    </tr>
    <tr>
      <td>🏒 <strong>Sponsor</strong><br><small>e.g., 'Pfizer', 'NIH', 'Amgen'</small></td>
      <td>🚻 <strong>Sex</strong><br><small>e.g., 'Male', 'Female', 'All'</small></td>
      <td>🧍 <strong>Age Group</strong><br><small>e.g., 'CHILD', 'ADULT', 'OLDER_ADULT'</small></td>
    </tr>
    <tr>
      <td>🎯 <strong>Sampling Method</strong><br><small>e.g., 'PROBABILITY_SAMPLE', 'NON_PROBABILITY_SAMPLE'</small></td>
      <td>πŸ“€ <strong>IPD Sharing</strong><br><small>e.g., 'YES', 'NO', 'UNDECIDED' (Individual Participant Data)</small></td>
      <td>🌍 <strong>Location</strong><br><small>e.g., country, city, or facility</small></td>
    </tr>
    <tr>
      <td colspan="3">πŸ“… <strong>Start/Completion Date</strong><br><small>e.g., '2020', '2020-05', or '2020-05-20'</small></td>
    </tr>
  </table>

  <br>
  πŸ’¬ Ask your question naturally, but include keywords like condition, location, phase, sex, or sponsor for best results.<br>
  You can combine filters (e.g., <em>'recruiting lung cancer trials in Canada by Pfizer'</em>) for more precise answers.<br><br>
  πŸ’‘ <em>Try one of the examples below to get started!</em>
</div>
"""

gr.ChatInterface(
    fn=chat,  # Your actual function
    type="messages",
    title="ClinicalTrials.gov Agent",
    description=description,
    chatbot=gr.Chatbot(label="CTGagent", type="messages", height=1000),
    examples=example_prompts
).launch(app_kwargs={"title": "CTGagent"})

# %%