Spaces:
Sleeping
Sleeping
File size: 3,759 Bytes
ff3f523 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import numpy as np
import plotly.graph_objects as go
# Initialize model and tokenizer
MODEL_OPTIONS = {
"waleko/roberta-arxiv-tags": "RoBERTa Arxiv Tags"
}
def load_model(model_name):
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
return model, tokenizer
current_model = None
current_tokenizer = None
def get_model_and_tokenizer(model_name):
global current_model, current_tokenizer
if current_model is None or current_tokenizer is None:
current_model, current_tokenizer = load_model(model_name)
return current_model, current_tokenizer
def create_visualization(probs, labels):
return go.Figure(data=[go.Pie(
labels=labels + ['Others'] if sum(probs) < 1 else labels,
values=list(probs) + [1 - sum(probs)] if sum(probs) < 1 else list(probs),
textinfo='percent',
textposition='inside',
hole=.3,
showlegend=True
)])
def classify_text(title, abstract, model_name):
if not title and not abstract:
return "Error: At least one of title or abstract must be provided.", None
model, tokenizer = get_model_and_tokenizer(model_name)
text = 'Title: ' + (title or '') + '\n\nAbstract: ' + (abstract or '')
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=1024)
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probs = torch.nn.functional.softmax(logits[0], dim=0)
probs = probs.numpy()
sorted_idx = np.argsort(probs)[::-1]
sorted_probs = probs[sorted_idx]
cumsum = np.cumsum(sorted_probs)
k = 1
if sorted_probs[0] < 0.95:
k = np.argmax(cumsum >= 0.95) + 1
id2label = model.config.id2label
tags = [id2label[idx] for idx in sorted_idx[:k]]
compact_pred = f'<span style="font-weight: 800;">{tags[0]}</span>' + (f" {' '.join(tags[1:])}" if len(tags) > 1 else "")
viz_data = create_visualization(
sorted_probs[:k],
[id2label[idx] for idx in sorted_idx[:k]]
)
html_output = f"""
<div>
<h3>Predicted Tags</h3>
<p>{compact_pred}</p>
</div>
"""
return html_output, viz_data
# Create Gradio interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# Arxiv Tags Classification
Classify academic papers into arXiv categories using state-of-the-art language models.
""")
with gr.Row():
with gr.Column(scale=1):
model_dropdown = gr.Dropdown(
choices=list(MODEL_OPTIONS.keys()),
value=list(MODEL_OPTIONS.keys())[0],
label="Select Model",
info="Choose the model for classification"
)
title_input = gr.Textbox(
lines=1,
label="Title",
placeholder="Enter paper title (optional if abstract is provided)"
)
abstract_input = gr.Textbox(
lines=5,
label="Abstract",
placeholder="Enter paper abstract (optional if title is provided)"
)
with gr.Column(scale=1):
output_html = gr.HTML(
label="Predicted Tags"
)
output_plot = gr.Plot(
label="Probability Distribution",
show_label=True
)
inputs = [title_input, abstract_input, model_dropdown]
btn = gr.Button("Classify", variant="primary")
btn.click(fn=classify_text, inputs=inputs, outputs=[output_html, output_plot])
if __name__ == "__main__":
demo.launch() |