w3robotics commited on
Commit
ee99cbb
Β·
verified Β·
1 Parent(s): 01d6892

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +168 -1
app.py CHANGED
@@ -3,6 +3,10 @@ import os
3
  from streamlit_extras.stylable_container import stylable_container
4
  from PIL import Image
5
 
 
 
 
 
6
 
7
  # Variables used Globally
8
  path = "/data" #preset path for hugging face spaces for persistent storage and cannot be changed
@@ -122,9 +126,172 @@ with recycle_column:
122
  st.button("Recycle", key='recycle')
123
 
124
  # Main app goes below here -
125
-
126
 
127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128
 
129
 
130
 
 
3
  from streamlit_extras.stylable_container import stylable_container
4
  from PIL import Image
5
 
6
+ from langchain_huggingface import HuggingFaceEndpoint
7
+ from langchain_core.prompts import PromptTemplate
8
+ from langchain_core.output_parsers import StrOutputParser
9
+
10
 
11
  # Variables used Globally
12
  path = "/data" #preset path for hugging face spaces for persistent storage and cannot be changed
 
126
  st.button("Recycle", key='recycle')
127
 
128
  # Main app goes below here -
 
129
 
130
 
131
+ model_id="mistralai/Mistral-7B-Instruct-v0.3"
132
+
133
+ def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.1):
134
+ """
135
+ Returns a language model for HuggingFace inference.
136
+
137
+ Parameters:
138
+ - model_id (str): The ID of the HuggingFace model repository.
139
+ - max_new_tokens (int): The maximum number of new tokens to generate.
140
+ - temperature (float): The temperature for sampling from the model.
141
+
142
+ Returns:
143
+ - llm (HuggingFaceEndpoint): The language model for HuggingFace inference.
144
+ """
145
+ llm = HuggingFaceEndpoint(
146
+ repo_id=model_id,
147
+ max_new_tokens=max_new_tokens,
148
+ temperature=temperature,
149
+ token = os.getenv("HF_TOKEN")
150
+ )
151
+ return llm
152
+
153
+ # Configure the Streamlit app
154
+ st.set_page_config(page_title="HuggingFace ChatBot", page_icon="πŸ€—")
155
+ st.title("Personal HuggingFace ChatBot")
156
+ st.markdown(f"*This is a simple chatbot that uses the HuggingFace transformers library to generate responses to your text input. It uses the {model_id}.*")
157
+
158
+ # Initialize session state for avatars
159
+ if "avatars" not in st.session_state:
160
+ st.session_state.avatars = {'user': None, 'assistant': None}
161
+
162
+ # Initialize session state for user text input
163
+ if 'user_text' not in st.session_state:
164
+ st.session_state.user_text = None
165
+
166
+ # Initialize session state for model parameters
167
+ if "max_response_length" not in st.session_state:
168
+ st.session_state.max_response_length = 256
169
+
170
+ if "system_message" not in st.session_state:
171
+ st.session_state.system_message = "friendly AI conversing with a human user"
172
+
173
+ if "starter_message" not in st.session_state:
174
+ st.session_state.starter_message = "Hello, there! How can I help you today?"
175
+
176
+
177
+ # Sidebar for settings
178
+ with st.sidebar:
179
+ st.header("System Settings")
180
+
181
+ # AI Settings
182
+ st.session_state.system_message = st.text_area(
183
+ "System Message", value="You are a friendly AI conversing with a human user."
184
+ )
185
+ st.session_state.starter_message = st.text_area(
186
+ 'First AI Message', value="Hello, there! How can I help you today?"
187
+ )
188
+
189
+ # Model Settings
190
+ st.session_state.max_response_length = st.number_input(
191
+ "Max Response Length", value=128
192
+ )
193
+
194
+ # Avatar Selection
195
+ st.markdown("*Select Avatars:*")
196
+ col1, col2 = st.columns(2)
197
+ with col1:
198
+ st.session_state.avatars['assistant'] = st.selectbox(
199
+ "AI Avatar", options=["πŸ€—", "πŸ’¬", "πŸ€–"], index=0
200
+ )
201
+ with col2:
202
+ st.session_state.avatars['user'] = st.selectbox(
203
+ "User Avatar", options=["πŸ‘€", "πŸ‘±β€β™‚οΈ", "πŸ‘¨πŸΎ", "πŸ‘©", "πŸ‘§πŸΎ"], index=0
204
+ )
205
+ # Reset Chat History
206
+ reset_history = st.button("Reset Chat History")
207
+
208
+ # Initialize or reset chat history
209
+ if "chat_history" not in st.session_state or reset_history:
210
+ st.session_state.chat_history = [{"role": "assistant", "content": st.session_state.starter_message}]
211
+
212
+ def get_response(system_message, chat_history, user_text,
213
+ eos_token_id=['User'], max_new_tokens=256, get_llm_hf_kws={}):
214
+ """
215
+ Generates a response from the chatbot model.
216
+
217
+ Args:
218
+ system_message (str): The system message for the conversation.
219
+ chat_history (list): The list of previous chat messages.
220
+ user_text (str): The user's input text.
221
+ model_id (str, optional): The ID of the HuggingFace model to use.
222
+ eos_token_id (list, optional): The list of end-of-sentence token IDs.
223
+ max_new_tokens (int, optional): The maximum number of new tokens to generate.
224
+ get_llm_hf_kws (dict, optional): Additional keyword arguments for the get_llm_hf function.
225
+
226
+ Returns:
227
+ tuple: A tuple containing the generated response and the updated chat history.
228
+ """
229
+ # Set up the model
230
+ hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.1)
231
+
232
+ # Create the prompt template
233
+ prompt = PromptTemplate.from_template(
234
+ (
235
+ "[INST] {system_message}"
236
+ "\nCurrent Conversation:\n{chat_history}\n\n"
237
+ "\nUser: {user_text}.\n [/INST]"
238
+ "\nAI:"
239
+ )
240
+ )
241
+ # Make the chain and bind the prompt
242
+ chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
243
+
244
+ # Generate the response
245
+ response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=chat_history))
246
+ response = response.split("AI:")[-1]
247
+
248
+ # Update the chat history
249
+ chat_history.append({'role': 'user', 'content': user_text})
250
+ chat_history.append({'role': 'assistant', 'content': response})
251
+ return response, chat_history
252
+
253
+ # Chat interface
254
+ chat_interface = st.container(border=True)
255
+ with chat_interface:
256
+ output_container = st.container()
257
+ st.session_state.user_text = st.chat_input(placeholder="Enter your text here.")
258
+
259
+ # Display chat messages
260
+ with output_container:
261
+ # For every message in the history
262
+ for message in st.session_state.chat_history:
263
+ # Skip the system message
264
+ if message['role'] == 'system':
265
+ continue
266
+
267
+ # Display the chat message using the correct avatar
268
+ with st.chat_message(message['role'],
269
+ avatar=st.session_state['avatars'][message['role']]):
270
+ st.markdown(message['content'])
271
+
272
+ # When the user enter new text:
273
+ if st.session_state.user_text:
274
+
275
+ # Display the user's new message immediately
276
+ with st.chat_message("user",
277
+ avatar=st.session_state.avatars['user']):
278
+ st.markdown(st.session_state.user_text)
279
+
280
+ # Display a spinner status bar while waiting for the response
281
+ with st.chat_message("assistant",
282
+ avatar=st.session_state.avatars['assistant']):
283
+
284
+ with st.spinner("Thinking..."):
285
+ # Call the Inference API with the system_prompt, user text, and history
286
+ response, st.session_state.chat_history = get_response(
287
+ system_message=st.session_state.system_message,
288
+ user_text=st.session_state.user_text,
289
+ chat_history=st.session_state.chat_history,
290
+ max_new_tokens=st.session_state.max_response_length,
291
+ )
292
+ st.markdown(response)
293
+ T
294
+
295
 
296
 
297