File size: 1,600 Bytes
8c52817
 
 
 
 
e24f049
8c52817
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e24f049
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import re

from transformers import DonutProcessor, VisionEncoderDecoderModel
from datasets import load_dataset
import torch
from PIL import Image
import numpy as np
import streamlit as st

processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-rvlcdip")
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-rvlcdip")

device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)

#image = Image.open(r"C:\Invoices\Sample Invoices\sample invoice 1.tif")
#image = image.convert("RGB")
#print(np.array(image).shape)


# load document image
dataset = load_dataset("hf-internal-testing/example-documents", split="test")
image = dataset[2]["image"]


task_prompt = "<s_rvlcdip>"
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids

pixel_values = processor(image, return_tensors="pt").pixel_values

outputs = model.generate(
    pixel_values.to(device),
    decoder_input_ids=decoder_input_ids.to(device),
    max_length=model.decoder.config.max_position_embeddings,
    pad_token_id=processor.tokenizer.pad_token_id,
    eos_token_id=processor.tokenizer.eos_token_id,
    use_cache=True,
    bad_words_ids=[[processor.tokenizer.unk_token_id]],
    return_dict_in_generate=True,
)

sequence = processor.batch_decode(outputs.sequences)[0]
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip()  # remove first task start token
print(processor.token2json(sequence))