Update train.py
Browse files
train.py
CHANGED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer
|
3 |
+
from datasets import load_dataset
|
4 |
+
from peft import LoraConfig, get_peft_model
|
5 |
+
|
6 |
+
# Model & Tokenizer
|
7 |
+
MODEL_NAME = "TinyLlama/TinyLlama-1.1B" # Adjust if using your own model
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float16)
|
10 |
+
|
11 |
+
# Apply LoRA for Efficient Fine-Tuning
|
12 |
+
peft_config = LoraConfig(
|
13 |
+
r=8, # Low-rank adaptation size
|
14 |
+
lora_alpha=16,
|
15 |
+
lora_dropout=0.05,
|
16 |
+
bias="none",
|
17 |
+
task_type="CAUSAL_LM"
|
18 |
+
)
|
19 |
+
model = get_peft_model(model, peft_config)
|
20 |
+
|
21 |
+
# Load Dataset (OASST1)
|
22 |
+
dataset = load_dataset("OpenAssistant/oasst1", split="train[:10%]") # Use 10% of dataset
|
23 |
+
|
24 |
+
# Tokenization Function
|
25 |
+
def tokenize_function(examples):
|
26 |
+
return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=512)
|
27 |
+
|
28 |
+
# Tokenize Dataset
|
29 |
+
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
30 |
+
|
31 |
+
# Training Arguments
|
32 |
+
training_args = TrainingArguments(
|
33 |
+
output_dir="./tinyllama-finetuned",
|
34 |
+
evaluation_strategy="epoch",
|
35 |
+
save_strategy="epoch",
|
36 |
+
per_device_train_batch_size=2, # Adjust for CPU
|
37 |
+
per_device_eval_batch_size=2,
|
38 |
+
num_train_epochs=3,
|
39 |
+
logging_dir="./logs",
|
40 |
+
report_to="none"
|
41 |
+
)
|
42 |
+
|
43 |
+
# Trainer
|
44 |
+
trainer = Trainer(
|
45 |
+
model=model,
|
46 |
+
args=training_args,
|
47 |
+
train_dataset=tokenized_datasets,
|
48 |
+
)
|
49 |
+
|
50 |
+
# Start Training
|
51 |
+
trainer.train()
|
52 |
+
|
53 |
+
# Save Fine-Tuned Model
|
54 |
+
model.save_pretrained("./tinyllama-finetuned")
|
55 |
+
tokenizer.save_pretrained("./tinyllama-finetuned")
|