Create app.py
Browse filesInitial code upload
app.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
from transformers.utils import logging
|
3 |
+
import torch
|
4 |
+
import pandas as pd
|
5 |
+
import time
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
logging.set_verbosity_error()
|
9 |
+
|
10 |
+
asr = pipeline(task="automatic-speech-recognition",
|
11 |
+
model ='openai/whisper-large-v3')
|
12 |
+
|
13 |
+
translator = pipeline(task="translation",
|
14 |
+
model="facebook/nllb-200-3.3B", max_length = 5120,
|
15 |
+
# model="facebook/nllb-200-distilled-600M",
|
16 |
+
torch_dtype=torch.bfloat16)
|
17 |
+
|
18 |
+
flores_200_df = pd.read_csv("Flores200_language_codes.csv", encoding='cp1252')
|
19 |
+
flores_200 = dict(zip(flores_200_df['Language'],flores_200_df['FLORES_200_code']))
|
20 |
+
flores_200_languages = list(flores_200.keys())
|
21 |
+
|
22 |
+
def transcribe_audio(filepath, src_language, tgt_language):
|
23 |
+
|
24 |
+
target_language = flores_200_df.loc[int(tgt_language),'Language']
|
25 |
+
source_language = flores_200_df.loc[int(src_language),'Language']
|
26 |
+
print(f"Selected Source Language: {source_language}, Target Language: {target_language}")
|
27 |
+
|
28 |
+
time.sleep(5)
|
29 |
+
if filepath is None:
|
30 |
+
gr.Warning("No audio found, please retry.")
|
31 |
+
return ""
|
32 |
+
|
33 |
+
english_transcript = asr(
|
34 |
+
filepath,
|
35 |
+
# max_new_tokens=256,
|
36 |
+
chunk_length_s=30,
|
37 |
+
batch_size=8,
|
38 |
+
)['text']
|
39 |
+
print(english_transcript)
|
40 |
+
|
41 |
+
transcripts = english_transcript.split('.')
|
42 |
+
|
43 |
+
translations = []
|
44 |
+
for tscript in transcripts:
|
45 |
+
translation = translator(tscript, src_lang="eng_Latn",
|
46 |
+
tgt_lang=flores_200_df.loc[int(tgt_language),'FLORES_200_code'])[0]['translation_text']
|
47 |
+
translations.append(translation+'.')
|
48 |
+
|
49 |
+
output = ' '.join(translations)LORES_200_code'])[0]['translation_text']
|
50 |
+
|
51 |
+
print(output)
|
52 |
+
return output
|
53 |
+
|
54 |
+
demo = gr.Blocks()
|
55 |
+
|
56 |
+
mic_transcribe = gr.Interface(title="Transcribe Audio of Any Language into Any Language - test and demo app by Srinivas.V ..",
|
57 |
+
description="Speak into your system using your system mic, select your source & target languages and submit (if error appears, retry)",
|
58 |
+
fn=transcribe_audio,
|
59 |
+
inputs=[gr.Audio(sources="microphone",
|
60 |
+
type="filepath"), gr.Dropdown(flores_200_df.Language.tolist(), type='index', label='Select Source Language'),
|
61 |
+
gr.Dropdown(flores_200_df.Language.tolist(), type='index', label='Select Target Language')],
|
62 |
+
outputs=gr.Textbox(label="Transcription in Selected Target Language",
|
63 |
+
lines=3),
|
64 |
+
allow_flagging="never")
|
65 |
+
|
66 |
+
file_transcribe = gr.Interface(title="Transcribe Audio of Any Language into Any Language - test and demo app by Srinivas.V ..",
|
67 |
+
description="Upload an audio file, select your source & target languages and submit (if error appears, retry)",
|
68 |
+
fn=transcribe_audio,
|
69 |
+
inputs=[gr.Audio(sources="upload",
|
70 |
+
type="filepath"), gr.Dropdown(flores_200_df.Language.tolist(), type='index', label='Select Source Language'),
|
71 |
+
gr.Dropdown(flores_200_df.Language.tolist(), type='index', label='Select Target Language')],
|
72 |
+
outputs=gr.Textbox(label="Transcription in Selected Target Language",
|
73 |
+
lines=3),
|
74 |
+
allow_flagging="never",
|
75 |
+
)
|
76 |
+
|
77 |
+
with demo:
|
78 |
+
gr.TabbedInterface(
|
79 |
+
[mic_transcribe,
|
80 |
+
file_transcribe],
|
81 |
+
["Speak Through Microphone",
|
82 |
+
"Upload Audio File"],
|
83 |
+
)
|
84 |
+
demo.launch(debug=True)
|