import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification from models import ModernBertForSentiment from transformers import ModernBertConfig from typing import Dict, Any import yaml import os class SentimentInference: def __init__(self, config_path: str = "config.yaml"): """Load configuration and initialize model and tokenizer.""" with open(config_path, 'r') as f: config = yaml.safe_load(f) model_cfg = config.get('model', {}) inference_cfg = config.get('inference', {}) # Path to the .pt model weights file model_weights_path = inference_cfg.get('model_path', os.path.join(model_cfg.get('output_dir', 'checkpoints'), 'best_model.pt')) # Base model name from config (e.g., 'answerdotai/ModernBERT-base') # This will be used for loading both tokenizer and base BERT config from Hugging Face Hub base_model_name = model_cfg.get('name', 'answerdotai/ModernBERT-base') self.max_length = inference_cfg.get('max_length', model_cfg.get('max_length', 256)) # Load tokenizer from the base model name (e.g., from Hugging Face Hub) print(f"Loading tokenizer from: {base_model_name}") self.tokenizer = AutoTokenizer.from_pretrained(base_model_name) # Load base BERT config from the base model name print(f"Loading ModernBertConfig from: {base_model_name}") bert_config = ModernBertConfig.from_pretrained(base_model_name) # --- Apply any necessary overrides from your config to the loaded bert_config --- # For example, if your ModernBertForSentiment expects specific config values beyond the base BERT model. # Your current ModernBertForSentiment takes the entire config object, which might implicitly carry these. # However, explicitly setting them on bert_config loaded from HF is safer if they are architecturally relevant. bert_config.classifier_dropout = model_cfg.get('dropout', bert_config.classifier_dropout) # Example # Ensure num_labels is set if your inference model needs it (usually for HF pipeline, less so for manual predict) # bert_config.num_labels = model_cfg.get('num_labels', 1) # Typically 1 for binary sentiment regression-style output # It's also important that pooling_strategy and num_weighted_layers are set on the config object # that ModernBertForSentiment receives, as it uses these to build its layers. # These are usually fine-tuning specific, not part of the base HF config, so they should come from your model_cfg. bert_config.pooling_strategy = model_cfg.get('pooling_strategy', 'cls') bert_config.num_weighted_layers = model_cfg.get('num_weighted_layers', 4) bert_config.loss_function = model_cfg.get('loss_function', {'name': 'SentimentWeightedLoss', 'params': {}}) # Needed by model init # Ensure num_labels is explicitly set for the model's classifier head bert_config.num_labels = 1 # For sentiment (positive/negative) often treated as 1 logit output print("Instantiating ModernBertForSentiment model structure...") self.model = ModernBertForSentiment(bert_config) print(f"Loading model weights from local checkpoint: {model_weights_path}") # Load the entire checkpoint dictionary first checkpoint = torch.load(model_weights_path, map_location=torch.device('cpu')) # Extract the model_state_dict from the checkpoint # This handles the case where the checkpoint saves more than just the model weights (e.g., optimizer state, epoch) if 'model_state_dict' in checkpoint: model_state_to_load = checkpoint['model_state_dict'] else: # If the checkpoint is just the state_dict itself (older format or different saving convention) model_state_to_load = checkpoint self.model.load_state_dict(model_state_to_load) self.model.eval() print("Model loaded successfully.") def predict(self, text: str) -> Dict[str, Any]: inputs = self.tokenizer(text, return_tensors="pt", truncation=True, max_length=self.max_length) with torch.no_grad(): outputs = self.model(input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask']) logits = outputs["logits"] prob = torch.sigmoid(logits).item() return {"sentiment": "positive" if prob > 0.5 else "negative", "confidence": prob}