File size: 13,692 Bytes
6529956
472f1d2
 
 
 
6529956
 
472f1d2
 
 
 
 
 
 
 
 
 
 
 
6529956
472f1d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6529956
 
 
 
 
 
 
 
 
 
 
 
 
472f1d2
 
6529956
 
472f1d2
 
6529956
472f1d2
 
6529956
472f1d2
 
 
 
 
 
 
 
6529956
472f1d2
 
6529956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
472f1d2
 
 
 
6529956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
472f1d2
6529956
 
 
 
 
 
 
472f1d2
 
6529956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
472f1d2
 
 
 
6529956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
472f1d2
 
6529956
472f1d2
 
6529956
472f1d2
 
 
 
 
 
6529956
 
 
 
 
 
 
472f1d2
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
from huggingface_hub import HfApi, upload_folder, create_repo, login
from transformers import AutoTokenizer, AutoConfig
import os
import shutil
import tempfile
import torch
import argparse

# --- Configuration ---
HUGGING_FACE_USERNAME = "voxmenthe"  # Your Hugging Face username
MODEL_NAME_ON_HF = "modernbert-imdb-sentiment" # The name of the model on Hugging Face
REPO_ID = f"{HUGGING_FACE_USERNAME}/{MODEL_NAME_ON_HF}"

# Original base model from which the tokenizer and initial config were derived
ORIGINAL_BASE_MODEL_NAME = "answerdotai/ModernBERT-base"

# Local path to your fine-tuned model checkpoint
LOCAL_MODEL_CHECKPOINT_DIR = "checkpoints"
FINE_TUNED_MODEL_FILENAME = "mean_epoch5_0.9575acc_0.9575f1.pt" # Your best checkpoint
# If your fine-tuned model is just a .pt file, ensure you also have a config.json for ModernBert
# For simplicity, we'll re-save the config from the fine-tuned model structure if possible, or from original base.

# Files from your project to include (e.g., custom model code, inference script)
# The user has moved these to the root directory.
PROJECT_FILES_TO_UPLOAD = [
    "config.yaml",
    "inference.py",
    "models.py",
    "train_utils.py",
    "classifiers.py",
    "README.md"
]

def upload_model_and_tokenizer():
    api = HfApi()

    REPO_ID = f"{HUGGING_FACE_USERNAME}/{MODEL_NAME_ON_HF}"
    print(f"Preparing to upload to Hugging Face Hub repository: {REPO_ID}")

    # Create the repository on Hugging Face Hub if it doesn't exist
    # This should be done after login to ensure correct permissions
    print(f"Ensuring repository '{REPO_ID}' exists on Hugging Face Hub...")
    try:
        create_repo(repo_id=REPO_ID, repo_type="model", exist_ok=True)
        print(f"Repository '{REPO_ID}' ensured.")
    except Exception as e:
        print(f"Error creating/accessing repository {REPO_ID}: {e}")
        print("Please check your Hugging Face token and repository permissions.")
        return

    # Create a temporary directory to gather all files for upload
    with tempfile.TemporaryDirectory() as temp_dir:
        print(f"Created temporary directory for upload: {temp_dir}")

        # 1. Save tokenizer files from the ORIGINAL_BASE_MODEL_NAME
        print(f"Saving tokenizer from {ORIGINAL_BASE_MODEL_NAME} to {temp_dir}...")
        try:
            tokenizer = AutoTokenizer.from_pretrained(ORIGINAL_BASE_MODEL_NAME)
            tokenizer.save_pretrained(temp_dir)
            print("Tokenizer files saved.")
        except Exception as e:
            print(f"Error saving tokenizer from {ORIGINAL_BASE_MODEL_NAME}: {e}")
            print("Please ensure this model name is correct and accessible.")
            return

        # 2. Save base model config.json (architecture) from ORIGINAL_BASE_MODEL_NAME
        # This is crucial for AutoModelForSequenceClassification.from_pretrained(REPO_ID) to work.
        print(f"Saving model config.json from {ORIGINAL_BASE_MODEL_NAME} to {temp_dir}...")
        try:
            config = AutoConfig.from_pretrained(ORIGINAL_BASE_MODEL_NAME)
            print(f"Config loaded. Initial num_labels (if exists): {getattr(config, 'num_labels', 'Not set')}")
            
            # Set architecture first
            config.architectures = ["ModernBertForSentiment"]

            # Add necessary classification head attributes for AutoModelForSequenceClassification
            config.num_labels = 1 # For IMDB sentiment (binary, single logit output based on training)
            print(f"After attempting to set: config.num_labels = {config.num_labels}")
            
            config.id2label = {0: "NEGATIVE", 1: "POSITIVE"} # Standard for binary, even with num_labels=1
            config.label2id = {"NEGATIVE": 0, "POSITIVE": 1}
            print(f"After setting id2label/label2id, config.num_labels is: {config.num_labels}")

            # CRITICAL: Force num_labels to 1 again immediately before saving
            config.num_labels = 1
            print(f"Immediately before save, FINAL check config.num_labels = {config.num_labels}")
            
            # Safeguard: Remove any existing config.json from temp_dir before saving ours
            potential_old_config_path = os.path.join(temp_dir, "config.json")
            if os.path.exists(potential_old_config_path):
                os.remove(potential_old_config_path)
                print(f"Removed existing config.json from {temp_dir} to ensure clean save.")

            config.save_pretrained(temp_dir)
            print(f"Model config.json (with num_labels={config.num_labels}, architectures={config.architectures}) saved to {temp_dir}.")
        except Exception as e:
            print(f"Error saving config.json from {ORIGINAL_BASE_MODEL_NAME}: {e}")
            return

        # Load the fine-tuned model checkpoint to extract the state_dict
        full_checkpoint_path = os.path.join(LOCAL_MODEL_CHECKPOINT_DIR, FINE_TUNED_MODEL_FILENAME)
        hf_model_path = os.path.join(temp_dir, "pytorch_model.bin")

        if not os.path.exists(full_checkpoint_path):
            print(f"ERROR: Local model checkpoint not found at {full_checkpoint_path}")
            shutil.rmtree(temp_dir)
            return

        print(f"Loading local checkpoint from: {full_checkpoint_path}")
        # Load checkpoint to CPU to avoid GPU memory issues if the script runner doesn't have/need GPU
        checkpoint = torch.load(full_checkpoint_path, map_location='cpu')

        model_state_dict = None
        if 'model_state_dict' in checkpoint:
            model_state_dict = checkpoint['model_state_dict']
            print("Extracted 'model_state_dict' from checkpoint.")
        elif 'state_dict' in checkpoint: # Another common key for state_dicts
            model_state_dict = checkpoint['state_dict']
            print("Extracted 'state_dict' from checkpoint.")
        elif isinstance(checkpoint, dict) and all(isinstance(k, str) for k in checkpoint.keys()):
            # If the checkpoint is already a state_dict (e.g., from torch.save(model.state_dict(), ...))
            # Basic check: does it have keys that look like weights/biases?
            if any(key.endswith('.weight') or key.endswith('.bias') for key in checkpoint.keys()):
                model_state_dict = checkpoint
                print("Checkpoint appears to be a raw state_dict (contains .weight or .bias keys).")
            else:
                print("Checkpoint is a dict, but does not immediately appear to be a state_dict (no .weight/.bias keys found).")
                print(f"Checkpoint keys: {list(checkpoint.keys())[:10]}...") # Print some keys for diagnosis

        else:
            # This case handles if checkpoint is not a dict or doesn't match known structures
            print(f"ERROR: Could not find a known state_dict key in the checkpoint, and it's not a recognizable raw state_dict.")
            if isinstance(checkpoint, dict):
                print(f"Checkpoint dictionary keys found: {list(checkpoint.keys())}")
            else:
                print(f"Checkpoint is not a dictionary. Type: {type(checkpoint)}")
            shutil.rmtree(temp_dir)
            return

        if model_state_dict is None:
            print("ERROR: model_state_dict was not successfully extracted. Aborting upload.")
            shutil.rmtree(temp_dir)
            return

        # --- DEBUG: Print keys of the state_dict --- 
        print("\n--- Keys in extracted (original) model_state_dict (first 30 and last 10): ---")
        state_dict_keys = list(model_state_dict.keys())
        if len(state_dict_keys) > 0:
            for i, key in enumerate(state_dict_keys[:30]):
                print(f"  {i+1}. {key}")
            if len(state_dict_keys) > 40: # Show ellipsis if there's a gap
                print("  ...")
            # Print last 10 keys if there are more than 30
            start_index_for_last_10 = max(30, len(state_dict_keys) - 10)
            for i, key_idx in enumerate(range(start_index_for_last_10, len(state_dict_keys))):
                print(f"  {key_idx+1}. {state_dict_keys[key_idx]}")
        else:
            print("  (No keys found in model_state_dict)")
        print(f"Total keys: {len(state_dict_keys)}")
        print("-----------------------------------------------------------\n")
        # --- END DEBUG --- 

        # Transform keys for Hugging Face compatibility if needed.
        # For ModernBertForSentiment with self.bert and self.classifier (custom head):
        # - Checkpoint 'bert.*' should remain 'bert.*'
        # - Checkpoint 'classifier.*' keys (e.g., classifier.dense1.weight, classifier.out_proj.weight) should remain 'classifier.*' as they are.
        transformed_state_dict = {}
        has_classifier_weights_transformed = False # Used to track if out_proj was found

        print("Transforming state_dict keys for Hugging Face Hub compatibility...")
        for key, value in model_state_dict.items():
            new_key = None
            if key.startswith("bert."):
                # Keep 'bert.' prefix as ModernBertForSentiment uses self.bert
                new_key = key 
            elif key.startswith("classifier."):
                # All parts of the custom classifier head should retain their names
                new_key = key
                if "out_proj" in key: # Just to confirm it exists
                     has_classifier_weights_transformed = True # Indicate out_proj was found and processed
        
            if new_key:
                transformed_state_dict[new_key] = value
                if key != new_key:
                    print(f"  Mapping '{key}' -> '{new_key}'")
                else:
                    # print(f"  Keeping key as is: '{key}'") # Optional
                    pass 
            else:
                print(f"  INFO: Discarding key not mapped: {key}")

        # Check if the critical classifier output layer was present in the source checkpoint
        # This check might need adjustment based on the actual layers of ClassifierHead
        # For now, we check if any 'out_proj' key was seen under 'classifier.'
        if not has_classifier_weights_transformed:
            print("WARNING: No 'classifier.out_proj.*' keys were found in the source checkpoint.")
            print("         Ensure your checkpoint contains the expected classifier layers.")
            # Not necessarily an error to abort, as other classifier keys might be valid.

        model_state_dict = transformed_state_dict

        # --- DEBUG: Print keys of the TRANSFORMED state_dict ---        
        print("\n--- Keys in TRANSFORMED model_state_dict for upload (first 30 and last 10): ---")
        state_dict_keys_transformed = list(transformed_state_dict.keys())
        if len(state_dict_keys_transformed) > 0:
            for i, key_t in enumerate(state_dict_keys_transformed[:30]):
                print(f"  {i+1}. {key_t}")
            if len(state_dict_keys_transformed) > 40:
                print("  ...")
            start_index_for_last_10_t = max(30, len(state_dict_keys_transformed) - 10)
            for i, key_idx_t in enumerate(range(start_index_for_last_10_t, len(state_dict_keys_transformed))):
                print(f"  {key_idx_t+1}. {state_dict_keys_transformed[key_idx_t]}")
        else:
            print("  (No keys found in transformed_state_dict)")
        print(f"Total keys in transformed_state_dict: {len(state_dict_keys_transformed)}")
        print("-----------------------------------------------------------\n")

        # Save the TRANSFORMED state_dict
        torch.save(transformed_state_dict, hf_model_path)
        print(f"Saved TRANSFORMED model state_dict to {hf_model_path}.")

        # 4. Copy other project files
        for project_file in PROJECT_FILES_TO_UPLOAD:
            local_project_file_path = project_file # Files are now at the root
            if os.path.exists(local_project_file_path):
                shutil.copy(local_project_file_path, os.path.join(temp_dir, os.path.basename(project_file)))
                print(f"Copied project file {project_file} to {temp_dir}.")

        # Before uploading, let's inspect the temp_dir to be absolutely sure what's there
        print(f"--- Inspecting temp_dir ({temp_dir}) before upload: ---")
        for item in os.listdir(temp_dir):
            print(f"  - {item}")
        temp_config_path_to_check = os.path.join(temp_dir, "config.json")
        if os.path.exists(temp_config_path_to_check):
            print(f"--- Content of {temp_config_path_to_check} before upload: ---")
            with open(temp_config_path_to_check, 'r') as f_check:
                print(f_check.read())
            print("--- End of config.json content ---")
        else:
            print(f"WARNING: {temp_config_path_to_check} does NOT exist before upload!")

        # 5. Upload the contents of the temporary directory
        print(f"Uploading all files from {temp_dir} to {REPO_ID}...")
        try:
            upload_folder(
                folder_path=temp_dir,
                repo_id=REPO_ID,
                repo_type="model",
                commit_message=f"Upload fine-tuned model, tokenizer, and supporting files for {MODEL_NAME_ON_HF}"
            )
            print("All files uploaded successfully!")
        except Exception as e:
            print(f"Error uploading files: {e}")
        finally:
            print(f"Cleaning up temporary directory: {temp_dir}")
            # The TemporaryDirectory context manager handles cleanup automatically
            # but an explicit message is good for clarity.

        print("Upload process finished.")

if __name__ == "__main__":
    upload_model_and_tokenizer()