Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 4,615 Bytes
472f1d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from models import ModernBertForSentiment
from transformers import ModernBertConfig
from typing import Dict, Any
import yaml
import os
class SentimentInference:
def __init__(self, config_path: str = "config.yaml"):
"""Load configuration and initialize model and tokenizer."""
with open(config_path, 'r') as f:
config = yaml.safe_load(f)
model_cfg = config.get('model', {})
inference_cfg = config.get('inference', {})
# Path to the .pt model weights file
model_weights_path = inference_cfg.get('model_path',
os.path.join(model_cfg.get('output_dir', 'checkpoints'), 'best_model.pt'))
# Base model name from config (e.g., 'answerdotai/ModernBERT-base')
# This will be used for loading both tokenizer and base BERT config from Hugging Face Hub
base_model_name = model_cfg.get('name', 'answerdotai/ModernBERT-base')
self.max_length = inference_cfg.get('max_length', model_cfg.get('max_length', 256))
# Load tokenizer from the base model name (e.g., from Hugging Face Hub)
print(f"Loading tokenizer from: {base_model_name}")
self.tokenizer = AutoTokenizer.from_pretrained(base_model_name)
# Load base BERT config from the base model name
print(f"Loading ModernBertConfig from: {base_model_name}")
bert_config = ModernBertConfig.from_pretrained(base_model_name)
# --- Apply any necessary overrides from your config to the loaded bert_config ---
# For example, if your ModernBertForSentiment expects specific config values beyond the base BERT model.
# Your current ModernBertForSentiment takes the entire config object, which might implicitly carry these.
# However, explicitly setting them on bert_config loaded from HF is safer if they are architecturally relevant.
bert_config.classifier_dropout = model_cfg.get('dropout', bert_config.classifier_dropout) # Example
# Ensure num_labels is set if your inference model needs it (usually for HF pipeline, less so for manual predict)
# bert_config.num_labels = model_cfg.get('num_labels', 1) # Typically 1 for binary sentiment regression-style output
# It's also important that pooling_strategy and num_weighted_layers are set on the config object
# that ModernBertForSentiment receives, as it uses these to build its layers.
# These are usually fine-tuning specific, not part of the base HF config, so they should come from your model_cfg.
bert_config.pooling_strategy = model_cfg.get('pooling_strategy', 'cls')
bert_config.num_weighted_layers = model_cfg.get('num_weighted_layers', 4)
bert_config.loss_function = model_cfg.get('loss_function', {'name': 'SentimentWeightedLoss', 'params': {}}) # Needed by model init
# Ensure num_labels is explicitly set for the model's classifier head
bert_config.num_labels = 1 # For sentiment (positive/negative) often treated as 1 logit output
print("Instantiating ModernBertForSentiment model structure...")
self.model = ModernBertForSentiment(bert_config)
print(f"Loading model weights from local checkpoint: {model_weights_path}")
# Load the entire checkpoint dictionary first
checkpoint = torch.load(model_weights_path, map_location=torch.device('cpu'))
# Extract the model_state_dict from the checkpoint
# This handles the case where the checkpoint saves more than just the model weights (e.g., optimizer state, epoch)
if 'model_state_dict' in checkpoint:
model_state_to_load = checkpoint['model_state_dict']
else:
# If the checkpoint is just the state_dict itself (older format or different saving convention)
model_state_to_load = checkpoint
self.model.load_state_dict(model_state_to_load)
self.model.eval()
print("Model loaded successfully.")
def predict(self, text: str) -> Dict[str, Any]:
inputs = self.tokenizer(text, return_tensors="pt", truncation=True, max_length=self.max_length)
with torch.no_grad():
outputs = self.model(input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask'])
logits = outputs["logits"]
prob = torch.sigmoid(logits).item()
return {"sentiment": "positive" if prob > 0.5 else "negative", "confidence": prob} |