File size: 10,339 Bytes
b2c8596
 
 
 
 
 
 
a0cc202
eb4334e
 
 
 
 
 
 
 
b2c8596
 
 
 
a0cc202
 
 
 
b2c8596
a0cc202
 
 
 
 
 
 
b2c8596
a0cc202
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb4334e
a0cc202
eb4334e
a0cc202
eb4334e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0cc202
eb4334e
58ac711
bc1d057
 
58ac711
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2c8596
 
 
 
 
576f095
b2c8596
 
 
 
 
 
 
576f095
b2c8596
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58ac711
 
 
 
 
 
eb4334e
b2c8596
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb4334e
3dd4371
b2c8596
 
 
 
8ff21a8
396ac17
 
 
 
 
 
 
 
 
 
 
 
 
 
8ff21a8
e34dfbf
 
 
 
 
 
 
 
 
 
 
117ba37
e34dfbf
bd48496
 
 
 
 
 
 
8ff21a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22c87d0
8ff21a8
 
 
bd48496
 
 
 
 
 
 
e34dfbf
 
b2c8596
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import jax
import jax.numpy as jnp
from flax import jax_utils
from flax.training.common_utils import shard
from PIL import Image
from argparse import Namespace
import gradio as gr
import copy # added
import numpy as np
import mediapipe as mp
from mediapipe import solutions
from mediapipe.framework.formats import landmark_pb2
from mediapipe.tasks import python
from mediapipe.tasks.python import vision
import cv2

from diffusers import (
    FlaxControlNetModel,
    FlaxStableDiffusionControlNetPipeline,
)
right_style_lm = copy.deepcopy(solutions.drawing_styles.get_default_hand_landmarks_style())
left_style_lm = copy.deepcopy(solutions.drawing_styles.get_default_hand_landmarks_style())
right_style_lm[0].color=(251, 206, 177)
left_style_lm[0].color=(255, 255, 225)

def draw_landmarks_on_image(rgb_image, detection_result, overlap=False, hand_encoding=False):
    hand_landmarks_list = detection_result.hand_landmarks
    handedness_list = detection_result.handedness
    if overlap:
        annotated_image = np.copy(rgb_image)
    else:
        annotated_image = np.zeros_like(rgb_image)

    # Loop through the detected hands to visualize.
    for idx in range(len(hand_landmarks_list)):
        hand_landmarks = hand_landmarks_list[idx]
        handedness = handedness_list[idx]
        # Draw the hand landmarks.
        hand_landmarks_proto = landmark_pb2.NormalizedLandmarkList()
        hand_landmarks_proto.landmark.extend([
                landmark_pb2.NormalizedLandmark(x=landmark.x, y=landmark.y, z=landmark.z) for landmark in hand_landmarks
        ])
        if hand_encoding:
            if handedness[0].category_name == "Left":
                solutions.drawing_utils.draw_landmarks(
                        annotated_image,
                        hand_landmarks_proto,
                        solutions.hands.HAND_CONNECTIONS,
                        left_style_lm,
                        solutions.drawing_styles.get_default_hand_connections_style())
            if handedness[0].category_name == "Right":
                solutions.drawing_utils.draw_landmarks(
                        annotated_image,
                        hand_landmarks_proto,
                        solutions.hands.HAND_CONNECTIONS,
                        right_style_lm,
                        solutions.drawing_styles.get_default_hand_connections_style())
        else:
            solutions.drawing_utils.draw_landmarks(
                    annotated_image,
                    hand_landmarks_proto,
                    solutions.hands.HAND_CONNECTIONS,
                    solutions.drawing_styles.get_default_hand_landmarks_style(),
                    solutions.drawing_styles.get_default_hand_connections_style())

    return annotated_image

def generate_annotation(img, overlap=False, hand_encoding=False):
    """img(input): numpy array
       annotated_image(output): numpy array
    """
    # STEP 2: Create an HandLandmarker object.
    base_options = python.BaseOptions(model_asset_path='hand_landmarker.task')
    options = vision.HandLandmarkerOptions(base_options=base_options,
                                        num_hands=2)
    detector = vision.HandLandmarker.create_from_options(options)

    # STEP 3: Load the input image.
    image = mp.Image(
        image_format=mp.ImageFormat.SRGB, data=img)

    # STEP 4: Detect hand landmarks from the input image.
    detection_result = detector.detect(image)

    # STEP 5: Process the classification result. In this case, visualize it.
    annotated_image = draw_landmarks_on_image(image.numpy_view(), detection_result, overlap=overlap, hand_encoding=hand_encoding)
    return annotated_image

model_type = gr.Radio(["Standard", "Hand Encoding"], label="Model preprocessing", info="We developed two models, one with standard mediapipe landmarks, and one with different (but similar) coloring on palm landmards to distinguish left and right")
model_type="Standard"
if model_type=="Standard":
    args = Namespace(
        pretrained_model_name_or_path="runwayml/stable-diffusion-v1-5",
        revision="non-ema",
        from_pt=True,
        controlnet_model_name_or_path="Vincent-luo/controlnet-hands",
        controlnet_revision=None,
        controlnet_from_pt=False,
    )
if model_type=="Hand Encoding":
    args = Namespace(
        pretrained_model_name_or_path="runwayml/stable-diffusion-v1-5",
        revision="non-ema",
        from_pt=True,
        controlnet_model_name_or_path="MakiPan/controlnet-encoded-hands-130k",
        controlnet_revision=None,
        controlnet_from_pt=False,
    )

controlnet, controlnet_params = FlaxControlNetModel.from_pretrained(
    args.controlnet_model_name_or_path,
    revision=args.controlnet_revision,
    from_pt=args.controlnet_from_pt,
    dtype=jnp.float32, # jnp.bfloat16
)

pipeline, pipeline_params = FlaxStableDiffusionControlNetPipeline.from_pretrained(
    args.pretrained_model_name_or_path,
    # tokenizer=tokenizer,
    controlnet=controlnet,
    safety_checker=None,
    dtype=jnp.float32, # jnp.bfloat16
    revision=args.revision,
    from_pt=args.from_pt,
)


pipeline_params["controlnet"] = controlnet_params
pipeline_params = jax_utils.replicate(pipeline_params)

rng = jax.random.PRNGKey(0)
num_samples = jax.device_count()
prng_seed = jax.random.split(rng, jax.device_count())


def infer(prompt, negative_prompt, image):
    prompts = num_samples * [prompt]
    prompt_ids = pipeline.prepare_text_inputs(prompts)
    prompt_ids = shard(prompt_ids)

    if model_type=="Standard":
        annotated_image = generate_annotation(image, overlap=False, hand_encoding=False)
        overlap_image = generate_annotation(image, overlap=True, hand_encoding=False)
    if model_type=="Hand Encoding":
        annotated_image = generate_annotation(image, overlap=False, hand_encoding=True)
        overlap_image = generate_annotation(image, overlap=True, hand_encoding=True)
    validation_image = Image.fromarray(annotated_image).convert("RGB")
    processed_image = pipeline.prepare_image_inputs(num_samples * [validation_image])
    processed_image = shard(processed_image)

    negative_prompt_ids = pipeline.prepare_text_inputs([negative_prompt] * num_samples)
    negative_prompt_ids = shard(negative_prompt_ids)

    images = pipeline(
        prompt_ids=prompt_ids,
        image=processed_image,
        params=pipeline_params,
        prng_seed=prng_seed,
        num_inference_steps=50,
        neg_prompt_ids=negative_prompt_ids,
        jit=True,
    ).images


    images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:])

    results = [i for i in images]
    return [overlap_image, annotated_image] + results


with gr.Blocks(theme='gradio/soft') as demo:
    gr.Markdown("## Stable Diffusion with Hand Control")
    gr.Markdown("This model is a ControlNet model using MediaPipe hand landmarks for control.")

    gr.Markdown("""
    Model1 can be found at [https://huggingface.co/Vincent-luo/controlnet-hands](https://huggingface.co/Vincent-luo/controlnet-hands)
    
    Model2 can be found at [https://huggingface.co/MakiPan/controlnet-encoded-hands-130k/ ](https://huggingface.co/MakiPan/controlnet-encoded-hands-130k/)

    Dataset1 can be found at [https://huggingface.co/datasets/MakiPan/hagrid250k-blip2](https://huggingface.co/datasets/MakiPan/hagrid250k-blip2)
    
    Dataset2 can be found at [https://huggingface.co/datasets/MakiPan/hagrid-hand-enc-250k](https://huggingface.co/datasets/MakiPan/hagrid-hand-enc-250k)
    
    Preprocessing1 can be found at [https://github.com/Maki-DS/Jax-Controlnet-hand-training/blob/main/normal-preprocessing.py](https://github.com/Maki-DS/Jax-Controlnet-hand-training/blob/main/normal-preprocessing.py)

    Preprocessing2 can be found at [https://github.com/Maki-DS/Jax-Controlnet-hand-training/blob/main/Hand-encoded-preprocessing.py](https://github.com/Maki-DS/Jax-Controlnet-hand-training/blob/main/Hand-encoded-preprocessing.py)
    """)
    
    with gr.Row():
        with gr.Column():
            prompt_input = gr.Textbox(label="Prompt")
            negative_prompt = gr.Textbox(label="Negative Prompt")
            input_image = gr.Image(label="Input Image")
            # output_image = gr.Gallery(label='Output Image', show_label=False, elem_id="gallery").style(grid=3, height='auto')
            submit_btn = gr.Button(value = "Submit")
            # inputs = [prompt_input, negative_prompt, input_image]
            # submit_btn.click(fn=infer, inputs=inputs, outputs=[output_image])
    
        with gr.Column():
            output_image = gr.Gallery(label='Output Image', show_label=False, elem_id="gallery").style(grid=2, height='auto')

    gr.Examples(
        examples=[
            [
               "a woman is making an ok sign in front of a painting",
               "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
               "example.png"
            ],
            [
               "a man with his hands up in the air making a rock sign",
               "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
               "example1.png"
            ],
            [
               "a man is making a thumbs up gesture",
               "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
               "example2.png"
            ],
            [
               "a woman is holding up her hand in front of a window",
               "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
               "example3.png"
            ],
            [
               "a man with his finger on his lips",
               "longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
               "example4.png"
            ],
        ],
        inputs=[prompt_input, negative_prompt, input_image],
        outputs=[output_image],
        fn=infer,
        cache_examples=True,
    )

    inputs = [prompt_input, negative_prompt, input_image]
    submit_btn.click(fn=infer, inputs=inputs, outputs=[output_image])

demo.launch()