Spaces:
Runtime error
Runtime error
File size: 10,339 Bytes
b2c8596 a0cc202 eb4334e b2c8596 a0cc202 b2c8596 a0cc202 b2c8596 a0cc202 eb4334e a0cc202 eb4334e a0cc202 eb4334e a0cc202 eb4334e 58ac711 bc1d057 58ac711 b2c8596 576f095 b2c8596 576f095 b2c8596 58ac711 eb4334e b2c8596 eb4334e 3dd4371 b2c8596 8ff21a8 396ac17 8ff21a8 e34dfbf 117ba37 e34dfbf bd48496 8ff21a8 22c87d0 8ff21a8 bd48496 e34dfbf b2c8596 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import jax
import jax.numpy as jnp
from flax import jax_utils
from flax.training.common_utils import shard
from PIL import Image
from argparse import Namespace
import gradio as gr
import copy # added
import numpy as np
import mediapipe as mp
from mediapipe import solutions
from mediapipe.framework.formats import landmark_pb2
from mediapipe.tasks import python
from mediapipe.tasks.python import vision
import cv2
from diffusers import (
FlaxControlNetModel,
FlaxStableDiffusionControlNetPipeline,
)
right_style_lm = copy.deepcopy(solutions.drawing_styles.get_default_hand_landmarks_style())
left_style_lm = copy.deepcopy(solutions.drawing_styles.get_default_hand_landmarks_style())
right_style_lm[0].color=(251, 206, 177)
left_style_lm[0].color=(255, 255, 225)
def draw_landmarks_on_image(rgb_image, detection_result, overlap=False, hand_encoding=False):
hand_landmarks_list = detection_result.hand_landmarks
handedness_list = detection_result.handedness
if overlap:
annotated_image = np.copy(rgb_image)
else:
annotated_image = np.zeros_like(rgb_image)
# Loop through the detected hands to visualize.
for idx in range(len(hand_landmarks_list)):
hand_landmarks = hand_landmarks_list[idx]
handedness = handedness_list[idx]
# Draw the hand landmarks.
hand_landmarks_proto = landmark_pb2.NormalizedLandmarkList()
hand_landmarks_proto.landmark.extend([
landmark_pb2.NormalizedLandmark(x=landmark.x, y=landmark.y, z=landmark.z) for landmark in hand_landmarks
])
if hand_encoding:
if handedness[0].category_name == "Left":
solutions.drawing_utils.draw_landmarks(
annotated_image,
hand_landmarks_proto,
solutions.hands.HAND_CONNECTIONS,
left_style_lm,
solutions.drawing_styles.get_default_hand_connections_style())
if handedness[0].category_name == "Right":
solutions.drawing_utils.draw_landmarks(
annotated_image,
hand_landmarks_proto,
solutions.hands.HAND_CONNECTIONS,
right_style_lm,
solutions.drawing_styles.get_default_hand_connections_style())
else:
solutions.drawing_utils.draw_landmarks(
annotated_image,
hand_landmarks_proto,
solutions.hands.HAND_CONNECTIONS,
solutions.drawing_styles.get_default_hand_landmarks_style(),
solutions.drawing_styles.get_default_hand_connections_style())
return annotated_image
def generate_annotation(img, overlap=False, hand_encoding=False):
"""img(input): numpy array
annotated_image(output): numpy array
"""
# STEP 2: Create an HandLandmarker object.
base_options = python.BaseOptions(model_asset_path='hand_landmarker.task')
options = vision.HandLandmarkerOptions(base_options=base_options,
num_hands=2)
detector = vision.HandLandmarker.create_from_options(options)
# STEP 3: Load the input image.
image = mp.Image(
image_format=mp.ImageFormat.SRGB, data=img)
# STEP 4: Detect hand landmarks from the input image.
detection_result = detector.detect(image)
# STEP 5: Process the classification result. In this case, visualize it.
annotated_image = draw_landmarks_on_image(image.numpy_view(), detection_result, overlap=overlap, hand_encoding=hand_encoding)
return annotated_image
model_type = gr.Radio(["Standard", "Hand Encoding"], label="Model preprocessing", info="We developed two models, one with standard mediapipe landmarks, and one with different (but similar) coloring on palm landmards to distinguish left and right")
model_type="Standard"
if model_type=="Standard":
args = Namespace(
pretrained_model_name_or_path="runwayml/stable-diffusion-v1-5",
revision="non-ema",
from_pt=True,
controlnet_model_name_or_path="Vincent-luo/controlnet-hands",
controlnet_revision=None,
controlnet_from_pt=False,
)
if model_type=="Hand Encoding":
args = Namespace(
pretrained_model_name_or_path="runwayml/stable-diffusion-v1-5",
revision="non-ema",
from_pt=True,
controlnet_model_name_or_path="MakiPan/controlnet-encoded-hands-130k",
controlnet_revision=None,
controlnet_from_pt=False,
)
controlnet, controlnet_params = FlaxControlNetModel.from_pretrained(
args.controlnet_model_name_or_path,
revision=args.controlnet_revision,
from_pt=args.controlnet_from_pt,
dtype=jnp.float32, # jnp.bfloat16
)
pipeline, pipeline_params = FlaxStableDiffusionControlNetPipeline.from_pretrained(
args.pretrained_model_name_or_path,
# tokenizer=tokenizer,
controlnet=controlnet,
safety_checker=None,
dtype=jnp.float32, # jnp.bfloat16
revision=args.revision,
from_pt=args.from_pt,
)
pipeline_params["controlnet"] = controlnet_params
pipeline_params = jax_utils.replicate(pipeline_params)
rng = jax.random.PRNGKey(0)
num_samples = jax.device_count()
prng_seed = jax.random.split(rng, jax.device_count())
def infer(prompt, negative_prompt, image):
prompts = num_samples * [prompt]
prompt_ids = pipeline.prepare_text_inputs(prompts)
prompt_ids = shard(prompt_ids)
if model_type=="Standard":
annotated_image = generate_annotation(image, overlap=False, hand_encoding=False)
overlap_image = generate_annotation(image, overlap=True, hand_encoding=False)
if model_type=="Hand Encoding":
annotated_image = generate_annotation(image, overlap=False, hand_encoding=True)
overlap_image = generate_annotation(image, overlap=True, hand_encoding=True)
validation_image = Image.fromarray(annotated_image).convert("RGB")
processed_image = pipeline.prepare_image_inputs(num_samples * [validation_image])
processed_image = shard(processed_image)
negative_prompt_ids = pipeline.prepare_text_inputs([negative_prompt] * num_samples)
negative_prompt_ids = shard(negative_prompt_ids)
images = pipeline(
prompt_ids=prompt_ids,
image=processed_image,
params=pipeline_params,
prng_seed=prng_seed,
num_inference_steps=50,
neg_prompt_ids=negative_prompt_ids,
jit=True,
).images
images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:])
results = [i for i in images]
return [overlap_image, annotated_image] + results
with gr.Blocks(theme='gradio/soft') as demo:
gr.Markdown("## Stable Diffusion with Hand Control")
gr.Markdown("This model is a ControlNet model using MediaPipe hand landmarks for control.")
gr.Markdown("""
Model1 can be found at [https://huggingface.co/Vincent-luo/controlnet-hands](https://huggingface.co/Vincent-luo/controlnet-hands)
Model2 can be found at [https://huggingface.co/MakiPan/controlnet-encoded-hands-130k/ ](https://huggingface.co/MakiPan/controlnet-encoded-hands-130k/)
Dataset1 can be found at [https://huggingface.co/datasets/MakiPan/hagrid250k-blip2](https://huggingface.co/datasets/MakiPan/hagrid250k-blip2)
Dataset2 can be found at [https://huggingface.co/datasets/MakiPan/hagrid-hand-enc-250k](https://huggingface.co/datasets/MakiPan/hagrid-hand-enc-250k)
Preprocessing1 can be found at [https://github.com/Maki-DS/Jax-Controlnet-hand-training/blob/main/normal-preprocessing.py](https://github.com/Maki-DS/Jax-Controlnet-hand-training/blob/main/normal-preprocessing.py)
Preprocessing2 can be found at [https://github.com/Maki-DS/Jax-Controlnet-hand-training/blob/main/Hand-encoded-preprocessing.py](https://github.com/Maki-DS/Jax-Controlnet-hand-training/blob/main/Hand-encoded-preprocessing.py)
""")
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(label="Prompt")
negative_prompt = gr.Textbox(label="Negative Prompt")
input_image = gr.Image(label="Input Image")
# output_image = gr.Gallery(label='Output Image', show_label=False, elem_id="gallery").style(grid=3, height='auto')
submit_btn = gr.Button(value = "Submit")
# inputs = [prompt_input, negative_prompt, input_image]
# submit_btn.click(fn=infer, inputs=inputs, outputs=[output_image])
with gr.Column():
output_image = gr.Gallery(label='Output Image', show_label=False, elem_id="gallery").style(grid=2, height='auto')
gr.Examples(
examples=[
[
"a woman is making an ok sign in front of a painting",
"longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
"example.png"
],
[
"a man with his hands up in the air making a rock sign",
"longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
"example1.png"
],
[
"a man is making a thumbs up gesture",
"longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
"example2.png"
],
[
"a woman is holding up her hand in front of a window",
"longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
"example3.png"
],
[
"a man with his finger on his lips",
"longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
"example4.png"
],
],
inputs=[prompt_input, negative_prompt, input_image],
outputs=[output_image],
fn=infer,
cache_examples=True,
)
inputs = [prompt_input, negative_prompt, input_image]
submit_btn.click(fn=infer, inputs=inputs, outputs=[output_image])
demo.launch() |