|
import gradio as gr
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torchaudio
|
|
from transformers import AutoConfig, Wav2Vec2FeatureExtractor, Wav2Vec2ForSpeechClassification
|
|
|
|
import librosa
|
|
import IPython.display as ipd
|
|
import numpy as np
|
|
import pandas as pd
|
|
|
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
model_name_or_path = "m3hrdadfi/wav2vec2-base-100k-voxpopuli-gtzan-music"
|
|
config = AutoConfig.from_pretrained(model_name_or_path)
|
|
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)
|
|
sampling_rate = feature_extractor.sampling_rate
|
|
model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device)
|
|
|
|
|
|
def speech_file_to_array_fn(path, sampling_rate):
|
|
speech_array, _sampling_rate = torchaudio.load(path)
|
|
resampler = torchaudio.transforms.Resample(_sampling_rate)
|
|
speech = resampler(speech_array).squeeze().numpy()
|
|
return speech
|
|
|
|
|
|
def predict(path, sampling_rate):
|
|
speech = speech_file_to_array_fn(path, sampling_rate)
|
|
inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
|
|
inputs = {key: inputs[key].to(device) for key in inputs}
|
|
|
|
with torch.no_grad():
|
|
logits = model(**inputs).logits
|
|
|
|
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
|
|
outputs = [{"Label": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)]
|
|
return outputs
|
|
|
|
|
|
path = "La Campanella.mp3"
|
|
outputs = predict(path, sampling_rate)
|
|
|
|
|
|
iface = gr.Interface(fn=predict, inputs=path, outputs=predict(path, sampling_rate))
|
|
iface.launch()
|
|
|