Update app.py
Browse files
app.py
CHANGED
@@ -1,30 +1,33 @@
|
|
1 |
import streamlit as st
|
2 |
-
from llama_index
|
3 |
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
|
4 |
from dotenv import load_dotenv
|
5 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
6 |
-
from llama_index
|
7 |
import os
|
8 |
import base64
|
9 |
|
10 |
# Load environment variables
|
11 |
load_dotenv()
|
12 |
|
13 |
-
# Configure the Llama index settings for using Hugging Face
|
14 |
-
|
15 |
-
model_name="
|
16 |
-
tokenizer_name="
|
17 |
-
context_window=
|
18 |
api_token=os.getenv("HF_TOKEN"), # Hugging Face API Token
|
19 |
max_new_tokens=512,
|
20 |
-
generate_kwargs={"temperature": 0.1},
|
21 |
)
|
22 |
|
23 |
-
# Set up Hugging Face Embedding model
|
24 |
-
|
25 |
-
model_name="
|
26 |
)
|
27 |
|
|
|
|
|
|
|
28 |
# Define the directory for persistent storage and data
|
29 |
PERSIST_DIR = "./db"
|
30 |
DATA_DIR = "data"
|
@@ -41,13 +44,13 @@ def displayPDF(file):
|
|
41 |
|
42 |
def data_ingestion():
|
43 |
documents = SimpleDirectoryReader(DATA_DIR).load_data()
|
44 |
-
storage_context = StorageContext.from_defaults()
|
45 |
-
index = VectorStoreIndex.from_documents(documents)
|
46 |
-
index.storage_context.persist(
|
47 |
|
48 |
def handle_query(query):
|
49 |
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
|
50 |
-
index = load_index_from_storage(storage_context)
|
51 |
chat_text_qa_msgs = [
|
52 |
(
|
53 |
"user",
|
@@ -94,4 +97,4 @@ if user_prompt:
|
|
94 |
|
95 |
for message in st.session_state.messages:
|
96 |
with st.chat_message(message['role']):
|
97 |
-
st.write(message['content'])
|
|
|
1 |
import streamlit as st
|
2 |
+
from llama_index import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate
|
3 |
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
|
4 |
from dotenv import load_dotenv
|
5 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
6 |
+
from llama_index import set_global_service_context
|
7 |
import os
|
8 |
import base64
|
9 |
|
10 |
# Load environment variables
|
11 |
load_dotenv()
|
12 |
|
13 |
+
# Configure the Llama index settings for using Hugging Face model
|
14 |
+
llm = HuggingFaceInferenceAPI(
|
15 |
+
model_name="bigscience/bloom-7b1", # Use a model available on Hugging Face Inference API
|
16 |
+
tokenizer_name="bigscience/bloom-7b1",
|
17 |
+
context_window=2048, # Adjust context window based on the model
|
18 |
api_token=os.getenv("HF_TOKEN"), # Hugging Face API Token
|
19 |
max_new_tokens=512,
|
20 |
+
generate_kwargs={"temperature": 0.1},
|
21 |
)
|
22 |
|
23 |
+
# Set up Hugging Face Embedding model
|
24 |
+
embed_model = HuggingFaceEmbedding(
|
25 |
+
model_name="sentence-transformers/all-MiniLM-L6-v2" # Use a suitable embedding model
|
26 |
)
|
27 |
|
28 |
+
# Set global service context
|
29 |
+
service_context = set_global_service_context(llm=llm, embed_model=embed_model)
|
30 |
+
|
31 |
# Define the directory for persistent storage and data
|
32 |
PERSIST_DIR = "./db"
|
33 |
DATA_DIR = "data"
|
|
|
44 |
|
45 |
def data_ingestion():
|
46 |
documents = SimpleDirectoryReader(DATA_DIR).load_data()
|
47 |
+
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
|
48 |
+
index = VectorStoreIndex.from_documents(documents, service_context=service_context)
|
49 |
+
index.storage_context.persist()
|
50 |
|
51 |
def handle_query(query):
|
52 |
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
|
53 |
+
index = load_index_from_storage(storage_context, service_context=service_context)
|
54 |
chat_text_qa_msgs = [
|
55 |
(
|
56 |
"user",
|
|
|
97 |
|
98 |
for message in st.session_state.messages:
|
99 |
with st.chat_message(message['role']):
|
100 |
+
st.write(message['content'])
|