Comparative-Analysis-of-Speech-Synthesis-Models
/
TensorFlowTTS
/tensorflow_tts
/configs
/tacotron2.py
# -*- coding: utf-8 -*- | |
# Copyright 2020 Minh Nguyen (@dathudeptrai) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tacotron-2 Config object.""" | |
from tensorflow_tts.configs import BaseConfig | |
from tensorflow_tts.processor.jsut import JSUT_SYMBOLS | |
from tensorflow_tts.processor.ljspeech import LJSPEECH_SYMBOLS as lj_symbols | |
from tensorflow_tts.processor.kss import KSS_SYMBOLS as kss_symbols | |
from tensorflow_tts.processor.baker import BAKER_SYMBOLS as bk_symbols | |
from tensorflow_tts.processor.libritts import LIBRITTS_SYMBOLS as lbri_symbols | |
from tensorflow_tts.processor.ljspeechu import LJSPEECH_U_SYMBOLS as lju_symbols | |
from tensorflow_tts.processor.synpaflex import SYNPAFLEX_SYMBOLS as synpaflex_symbols | |
from tensorflow_tts.processor.jsut import JSUT_SYMBOLS as jsut_symbols | |
class Tacotron2Config(BaseConfig): | |
"""Initialize Tacotron-2 Config.""" | |
def __init__( | |
self, | |
dataset="ljspeech", | |
vocab_size=len(lj_symbols), | |
embedding_hidden_size=512, | |
initializer_range=0.02, | |
layer_norm_eps=1e-6, | |
embedding_dropout_prob=0.1, | |
n_speakers=5, | |
n_conv_encoder=3, | |
encoder_conv_filters=512, | |
encoder_conv_kernel_sizes=5, | |
encoder_conv_activation="mish", | |
encoder_conv_dropout_rate=0.5, | |
encoder_lstm_units=256, | |
reduction_factor=5, | |
n_prenet_layers=2, | |
prenet_units=256, | |
prenet_activation="mish", | |
prenet_dropout_rate=0.5, | |
n_lstm_decoder=1, | |
decoder_lstm_units=1024, | |
attention_type="lsa", | |
attention_dim=128, | |
attention_filters=32, | |
attention_kernel=31, | |
n_mels=80, | |
n_conv_postnet=5, | |
postnet_conv_filters=512, | |
postnet_conv_kernel_sizes=5, | |
postnet_dropout_rate=0.1, | |
): | |
"""Init parameters for Tacotron-2 model.""" | |
if dataset == "ljspeech": | |
self.vocab_size = vocab_size | |
elif dataset == "kss": | |
self.vocab_size = len(kss_symbols) | |
elif dataset == "baker": | |
self.vocab_size = len(bk_symbols) | |
elif dataset == "libritts": | |
self.vocab_size = len(lbri_symbols) | |
elif dataset == "ljspeechu": | |
self.vocab_size = len(lju_symbols) | |
elif dataset == "synpaflex": | |
self.vocab_size = len(synpaflex_symbols) | |
elif dataset == "jsut": | |
self.vocab_size = len(jsut_symbols) | |
else: | |
raise ValueError("No such dataset: {}".format(dataset)) | |
self.embedding_hidden_size = embedding_hidden_size | |
self.initializer_range = initializer_range | |
self.layer_norm_eps = layer_norm_eps | |
self.embedding_dropout_prob = embedding_dropout_prob | |
self.n_speakers = n_speakers | |
self.n_conv_encoder = n_conv_encoder | |
self.encoder_conv_filters = encoder_conv_filters | |
self.encoder_conv_kernel_sizes = encoder_conv_kernel_sizes | |
self.encoder_conv_activation = encoder_conv_activation | |
self.encoder_conv_dropout_rate = encoder_conv_dropout_rate | |
self.encoder_lstm_units = encoder_lstm_units | |
# decoder param | |
self.reduction_factor = reduction_factor | |
self.n_prenet_layers = n_prenet_layers | |
self.prenet_units = prenet_units | |
self.prenet_activation = prenet_activation | |
self.prenet_dropout_rate = prenet_dropout_rate | |
self.n_lstm_decoder = n_lstm_decoder | |
self.decoder_lstm_units = decoder_lstm_units | |
self.attention_type = attention_type | |
self.attention_dim = attention_dim | |
self.attention_filters = attention_filters | |
self.attention_kernel = attention_kernel | |
self.n_mels = n_mels | |
# postnet | |
self.n_conv_postnet = n_conv_postnet | |
self.postnet_conv_filters = postnet_conv_filters | |
self.postnet_conv_kernel_sizes = postnet_conv_kernel_sizes | |
self.postnet_dropout_rate = postnet_dropout_rate | |