File size: 3,114 Bytes
d5ee97c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
# -*- coding: utf-8 -*-
# Copyright 2020 TensorflowTTS Team
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""HifiGAN Config object."""
from tensorflow_tts.configs import BaseConfig
class HifiGANGeneratorConfig(BaseConfig):
"""Initialize HifiGAN Generator Config."""
def __init__(
self,
out_channels=1,
kernel_size=7,
filters=128,
use_bias=True,
upsample_scales=[8, 8, 2, 2],
stacks=3,
stack_kernel_size=[3, 7, 11],
stack_dilation_rate=[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
nonlinear_activation="LeakyReLU",
nonlinear_activation_params={"alpha": 0.2},
padding_type="REFLECT",
use_final_nolinear_activation=True,
is_weight_norm=True,
initializer_seed=42,
**kwargs
):
"""Init parameters for HifiGAN Generator model."""
self.out_channels = out_channels
self.kernel_size = kernel_size
self.filters = filters
self.use_bias = use_bias
self.upsample_scales = upsample_scales
self.stacks = stacks
self.stack_kernel_size = stack_kernel_size
self.stack_dilation_rate = stack_dilation_rate
self.nonlinear_activation = nonlinear_activation
self.nonlinear_activation_params = nonlinear_activation_params
self.padding_type = padding_type
self.use_final_nolinear_activation = use_final_nolinear_activation
self.is_weight_norm = is_weight_norm
self.initializer_seed = initializer_seed
class HifiGANDiscriminatorConfig(object):
"""Initialize HifiGAN Discriminator Config."""
def __init__(
self,
out_channels=1,
period_scales=[2, 3, 5, 7, 11],
n_layers=5,
kernel_size=5,
strides=3,
filters=8,
filter_scales=4,
max_filters=1024,
nonlinear_activation="LeakyReLU",
nonlinear_activation_params={"alpha": 0.2},
is_weight_norm=True,
initializer_seed=42,
**kwargs
):
"""Init parameters for MelGAN Discriminator model."""
self.out_channels = out_channels
self.period_scales = period_scales
self.n_layers = n_layers
self.kernel_size = kernel_size
self.strides = strides
self.filters = filters
self.filter_scales = filter_scales
self.max_filters = max_filters
self.nonlinear_activation = nonlinear_activation
self.nonlinear_activation_params = nonlinear_activation_params
self.is_weight_norm = is_weight_norm
self.initializer_seed = initializer_seed
|