File size: 26,554 Bytes
ffa6f00
 
 
 
 
2a647a7
ffa6f00
2a647a7
ffa6f00
 
2a647a7
 
 
 
ffa6f00
2a647a7
 
 
ffa6f00
2a647a7
 
 
 
 
ffa6f00
2a647a7
 
 
ffa6f00
2a647a7
 
ffa6f00
2a647a7
 
 
ffa6f00
2a647a7
 
 
 
ffa6f00
2a647a7
 
 
 
 
ffa6f00
2a647a7
 
ffa6f00
2a647a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffa6f00
 
 
2a647a7
 
 
 
 
 
ffa6f00
2a647a7
 
 
 
 
 
 
 
 
 
 
 
 
 
ffa6f00
 
 
2a647a7
 
 
 
 
 
ffa6f00
2a647a7
 
 
 
 
 
 
ffa6f00
 
2a647a7
 
 
 
 
 
 
 
 
ffa6f00
 
 
2a647a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffa6f00
 
2a647a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffa6f00
 
 
 
2a647a7
 
 
 
 
 
 
ffa6f00
2a647a7
 
 
ffa6f00
2a647a7
 
 
ffa6f00
2a647a7
ffa6f00
 
 
 
 
2a647a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffa6f00
2a647a7
 
 
 
ffa6f00
 
 
 
2a647a7
ffa6f00
 
2a647a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffa6f00
2a647a7
 
ffa6f00
2a647a7
 
 
 
 
 
 
 
ffa6f00
2a647a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffa6f00
2a647a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffa6f00
2a647a7
 
ffa6f00
2a647a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffa6f00
 
 
2a647a7
 
 
 
ffa6f00
2a647a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffa6f00
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Image Segmentation Demo</title>
    <script src="https://cdn.tailwindcss.com"></script>
    <script src="https://cdn.jsdelivr.net/npm/chart.js"></script>
    <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.0/css/all.min.css">
    <style>
        .dropzone {
            border: 2px dashed #9CA3AF;
            border-radius: 0.5rem;
            transition: all 0.3s ease;
        }
        .dropzone.active {
            border-color: #3B82F6;
            background-color: #EFF6FF;
        }
        .result-container {
            transition: all 0.5s ease;
            opacity: 0;
            height: 0;
            overflow: hidden;
        }
        .result-container.show {
            opacity: 1;
            height: auto;
        }
        .loading-spinner {
            animation: spin 1s linear infinite;
        }
        @keyframes spin {
            0% { transform: rotate(0deg); }
            100% { transform: rotate(360deg); }
        }
        .image-container {
            position: relative;
            width: 100%;
            height: 300px;
        }
        .image-wrapper {
            position: relative;
            width: 100%;
            height: 100%;
            overflow: hidden;
        }
        .image-wrapper img {
            object-fit: contain;
            width: 100%;
            height: 100%;
        }
        .slider-container {
            position: absolute;
            bottom: 10px;
            left: 50%;
            transform: translateX(-50%);
            background: rgba(0,0,0,0.5);
            padding: 5px 10px;
            border-radius: 20px;
            color: white;
            display: flex;
            align-items: center;
            gap: 10px;
        }
        .slider {
            width: 150px;
        }
    </style>
</head>
<body class="bg-gray-50 min-h-screen">
    <div class="container mx-auto px-4 py-8">
        <header class="mb-8 text-center">
            <h1 class="text-3xl font-bold text-gray-800 mb-2">Image Segmentation Demo</h1>
            <p class="text-gray-600">Upload an image to generate segmentation masks using our AI model</p>
        </header>

        <div class="max-w-4xl mx-auto bg-white rounded-xl shadow-md overflow-hidden p-6 mb-8">
            <div class="grid md:grid-cols-2 gap-8">
                <!-- Upload Section -->
                <div>
                    <div id="dropzone" class="dropzone p-8 text-center cursor-pointer">
                        <div class="flex flex-col items-center justify-center">
                            <i class="fas fa-cloud-upload-alt text-4xl text-blue-500 mb-4"></i>
                            <h3 class="text-lg font-medium text-gray-700 mb-2">Drag & Drop your image here</h3>
                            <p class="text-gray-500 text-sm mb-4">or</p>
                            <label for="file-upload" class="px-4 py-2 bg-blue-500 text-white rounded-md hover:bg-blue-600 transition cursor-pointer">
                                Browse Files
                            </label>
                            <input id="file-upload" type="file" class="hidden" accept="image/*">
                            <p class="text-gray-400 text-xs mt-4">Supports: JPG, PNG, WEBP (Max 5MB)</p>
                        </div>
                    </div>
                    
                    <div id="preview-container" class="mt-4 hidden">
                        <h3 class="text-sm font-medium text-gray-700 mb-2">Selected Image</h3>
                        <div class="image-container">
                            <div class="image-wrapper bg-gray-100 rounded-lg">
                                <img id="preview-image" src="" alt="Preview" class="hidden">
                            </div>
                        </div>
                        <div class="flex justify-between mt-4">
                            <button id="process-btn" class="px-4 py-2 bg-blue-500 text-white rounded-md hover:bg-blue-600 transition">
                                <i class="fas fa-magic mr-2"></i> Process Image
                            </button>
                            <button id="clear-btn" class="px-4 py-2 bg-gray-200 text-gray-700 rounded-md hover:bg-gray-300 transition">
                                <i class="fas fa-trash-alt mr-2"></i> Clear
                            </button>
                        </div>
                    </div>
                </div>
                
                <!-- Results Section -->
                <div>
                    <div id="loading-indicator" class="hidden">
                        <div class="flex flex-col items-center justify-center h-full">
                            <div class="loading-spinner border-4 border-blue-500 border-t-transparent rounded-full w-12 h-12 mb-4"></div>
                            <p class="text-gray-600">Processing your image...</p>
                            <p class="text-gray-400 text-sm">This may take a few moments</p>
                        </div>
                    </div>
                    
                    <div id="result-container" class="result-container">
                        <h3 class="text-lg font-medium text-gray-700 mb-4">Segmentation Results</h3>
                        
                        <div class="mb-6">
                            <div class="flex items-center justify-between mb-2">
                                <h4 class="text-sm font-medium text-gray-700">Segmentation Mask</h4>
                                <div class="flex items-center">
                                    <button id="download-mask" class="text-blue-500 hover:text-blue-700 text-sm">
                                        <i class="fas fa-download mr-1"></i> Download
                                    </button>
                                </div>
                            </div>
                            <div class="image-container">
                                <div class="image-wrapper bg-gray-100 rounded-lg relative">
                                    <img id="mask-image" src="" alt="Segmentation Mask" class="hidden">
                                    <div class="slider-container hidden" id="mask-slider">
                                        <i class="fas fa-eye"></i>
                                        <input type="range" min="0" max="100" value="50" class="slider" id="mask-opacity">
                                        <span id="mask-value">50%</span>
                                    </div>
                                </div>
                            </div>
                        </div>
                        
                        <div class="mb-6">
                            <div class="flex items-center justify-between mb-2">
                                <h4 class="text-sm font-medium text-gray-700">Overlay Comparison</h4>
                                <div class="flex items-center">
                                    <button id="download-overlay" class="text-blue-500 hover:text-blue-700 text-sm">
                                        <i class="fas fa-download mr-1"></i> Download
                                    </button>
                                </div>
                            </div>
                            <div class="image-container">
                                <div class="image-wrapper bg-gray-100 rounded-lg relative">
                                    <img id="overlay-image" src="" alt="Overlay" class="hidden">
                                    <div class="slider-container">
                                        <i class="fas fa-sliders-h"></i>
                                        <input type="range" min="0" max="100" value="50" class="slider" id="overlay-opacity">
                                        <span id="overlay-value">50%</span>
                                    </div>
                                </div>
                            </div>
                        </div>
                        
                        <div class="bg-gray-50 p-4 rounded-lg">
                            <h4 class="text-sm font-medium text-gray-700 mb-2">Segmentation Statistics</h4>
                            <div class="grid grid-cols-3 gap-4 text-center">
                                <div class="bg-white p-2 rounded shadow">
                                    <p class="text-xs text-gray-500">Foreground Area</p>
                                    <p id="foreground-area" class="font-bold">0 px²</p>
                                </div>
                                <div class="bg-white p-2 rounded shadow">
                                    <p class="text-xs text-gray-500">Background Area</p>
                                    <p id="background-area" class="font-bold">0 px²</p>
                                </div>
                                <div class="bg-white p-2 rounded shadow">
                                    <p class="text-xs text-gray-500">Confidence</p>
                                    <p id="confidence-score" class="font-bold">0%</p>
                                </div>
                            </div>
                        </div>
                    </div>
                </div>
            </div>
        </div>
        
        <div class="max-w-4xl mx-auto bg-white rounded-xl shadow-md overflow-hidden p-6">
            <h2 class="text-xl font-bold text-gray-800 mb-4">About This Model</h2>
            <div class="grid md:grid-cols-2 gap-6">
                <div>
                    <h3 class="font-medium text-gray-700 mb-2">Model Details</h3>
                    <ul class="text-gray-600 space-y-2">
                        <li class="flex items-start">
                            <i class="fas fa-cog text-blue-500 mt-1 mr-2"></i>
                            <span>Architecture: Your Custom Segmentation Model</span>
                        </li>
                        <li class="flex items-start">
                            <i class="fas fa-weight-hanging text-blue-500 mt-1 mr-2"></i>
                            <span>Model File: .pth format</span>
                        </li>
                        <li class="flex items-start">
                            <i class="fas fa-tachometer-alt text-blue-500 mt-1 mr-2"></i>
                            <span>Inference Time: Varies by hardware</span>
                        </li>
                        <li class="flex items-start">
                            <i class="fas fa-chart-line text-blue-500 mt-1 mr-2"></i>
                            <span>Custom Trained Model</span>
                        </li>
                    </ul>
                </div>
                <div>
                    <h3 class="font-medium text-gray-700 mb-2">Performance Metrics</h3>
                    <div class="h-48">
                        <canvas id="metrics-chart"></canvas>
                    </div>
                </div>
            </div>
        </div>
    </div>

    <script>
        // DOM Elements
        const dropzone = document.getElementById('dropzone');
        const fileUpload = document.getElementById('file-upload');
        const previewContainer = document.getElementById('preview-container');
        const previewImage = document.getElementById('preview-image');
        const processBtn = document.getElementById('process-btn');
        const clearBtn = document.getElementById('clear-btn');
        const loadingIndicator = document.getElementById('loading-indicator');
        const resultContainer = document.getElementById('result-container');
        const maskImage = document.getElementById('mask-image');
        const overlayImage = document.getElementById('overlay-image');
        const maskSlider = document.getElementById('mask-slider');
        const maskOpacity = document.getElementById('mask-opacity');
        const maskValue = document.getElementById('mask-value');
        const overlayOpacity = document.getElementById('overlay-opacity');
        const overlayValue = document.getElementById('overlay-value');
        const foregroundArea = document.getElementById('foreground-area');
        const backgroundArea = document.getElementById('background-area');
        const confidenceScore = document.getElementById('confidence-score');
        const downloadMask = document.getElementById('download-mask');
        const downloadOverlay = document.getElementById('download-overlay');

        // Event Listeners
        dropzone.addEventListener('click', () => fileUpload.click());
        
        ['dragenter', 'dragover', 'dragleave', 'drop'].forEach(eventName => {
            dropzone.addEventListener(eventName, preventDefaults, false);
        });

        function preventDefaults(e) {
            e.preventDefault();
            e.stopPropagation();
        }

        ['dragenter', 'dragover'].forEach(eventName => {
            dropzone.addEventListener(eventName, highlight, false);
        });

        ['dragleave', 'drop'].forEach(eventName => {
            dropzone.addEventListener(eventName, unhighlight, false);
        });

        function highlight() {
            dropzone.classList.add('active');
        }

        function unhighlight() {
            dropzone.classList.remove('active');
        }

        dropzone.addEventListener('drop', handleDrop, false);
        fileUpload.addEventListener('change', handleFiles, false);
        
        function handleDrop(e) {
            const dt = e.dataTransfer;
            const files = dt.files;
            handleFiles({target: {files}});
        }

        function handleFiles(e) {
            const file = e.target.files[0];
            if (!file) return;
            
            if (!file.type.match('image.*')) {
                alert('Please select an image file (JPG, PNG, WEBP)');
                return;
            }
            
            if (file.size > 5 * 1024 * 1024) {
                alert('File size exceeds 5MB limit');
                return;
            }
            
            const reader = new FileReader();
            reader.onload = function(e) {
                previewImage.src = e.target.result;
                previewImage.classList.remove('hidden');
                previewContainer.classList.remove('hidden');
                resultContainer.classList.remove('show');
            };
            reader.readAsDataURL(file);
        }

        processBtn.addEventListener('click', processImage);
        clearBtn.addEventListener('click', clearAll);

        function clearAll() {
            fileUpload.value = '';
            previewImage.src = '';
            previewImage.classList.add('hidden');
            previewContainer.classList.add('hidden');
            maskImage.classList.add('hidden');
            overlayImage.classList.add('hidden');
            resultContainer.classList.remove('show');
            maskSlider.classList.add('hidden');
        }

        maskOpacity.addEventListener('input', () => {
            const value = maskOpacity.value;
            maskValue.textContent = `${value}%`;
            maskImage.style.opacity = value / 100;
        });

        overlayOpacity.addEventListener('input', () => {
            const value = overlayOpacity.value;
            overlayValue.textContent = `${value}%`;
            overlayImage.style.opacity = value / 100;
        });

        async function processImage() {
            if (!previewImage.src) {
                alert('Please select an image first');
                return;
            }
            
            // Show loading indicator
            loadingIndicator.classList.remove('hidden');
            resultContainer.classList.remove('show');
            
            try {
                // Convert the image to a blob for upload
                const blob = await fetch(previewImage.src).then(r => r.blob());
                
                // Create FormData to send the image
                const formData = new FormData();
                formData.append('image', blob, 'uploaded_image.jpg');
                
                // 1. FIRST APPROACH: Using a Flask backend
                // -----------------------------------------
                // You would need to create a Flask server that loads your model
                // and processes the image. The endpoint would be something like:
                // const response = await fetch('http://localhost:5000/process', {
                //     method: 'POST',
                //     body: formData
                // });
                
                // 2. SECOND APPROACH: Using Pyodide to run Python in browser
                // ---------------------------------------------------------
                // This approach runs your model directly in the browser using WebAssembly
                // You would need to:
                // 1. Load Pyodide
                // 2. Install required Python packages
                // 3. Load your model
                // 4. Process the image
                
                // Here's a basic structure for the Pyodide approach:
                /*
                // Load Pyodide
                let pyodide = await loadPyodide();
                
                // Install required packages
                await pyodide.loadPackage(["numpy", "Pillow", "torch"]);
                
                // Load your custom segmentation code
                // You would need to convert your model to a format that can be loaded in Pyodide
                // and include it in your project files
                await pyodide.runPythonAsync(`
                    import your_segmentation_module
                    from your_segmentation_module import YourSegmentationModel
                    
                    # Load your model (you would need to provide the path to your model file)
                    model = YourSegmentationModel()
                    model.load_state_dict(torch.load('path/to/your/model.pth'))
                    model.eval()
                    
                    # Process image function
                    def process_image(image_data):
                        # Your image processing and segmentation logic here
                        # Return the mask and statistics
                        return mask, foreground_area, background_area, confidence
                `);
                
                // Process the image
                const response = await pyodide.runPythonAsync(`
                    image_data = get_image_data()  # You would need to implement this
                    mask, fg_area, bg_area, conf = process_image(image_data)
                    # Convert results to format that can be returned to JS
                    # ...
                `);
                */
                
                // For this demo, we'll simulate a response
                // In a real implementation, you would use one of the approaches above
                const simulatedResponse = {
                    mask: "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVR42mP8z/C/HgAGgwJ/lK3Q6wAAAABJRU5ErkJggg==", // Base64 encoded placeholder
                    foreground_area: 12345,
                    background_area: 45678,
                    confidence: 0.92
                };
                
                // Display the results
                maskImage.src = `data:image/png;base64,${simulatedResponse.mask}`;
                maskImage.classList.remove('hidden');
                maskSlider.classList.remove('hidden');
                
                overlayImage.src = previewImage.src;
                overlayImage.classList.remove('hidden');
                
                // Update statistics
                foregroundArea.textContent = `${simulatedResponse.foreground_area} px²`;
                backgroundArea.textContent = `${simulatedResponse.background_area} px²`;
                confidenceScore.textContent = `${Math.round(simulatedResponse.confidence * 100)}%`;
                
                // Setup download buttons
                downloadMask.onclick = () => downloadImage(maskImage.src, 'segmentation-mask.png');
                downloadOverlay.onclick = () => downloadImage(overlayImage.src, 'segmentation-overlay.png');
                
                // Show results
                resultContainer.classList.add('show');
                
            } catch (error) {
                console.error('Error:', error);
                alert('Error processing image. Please try again.');
            } finally {
                loadingIndicator.classList.add('hidden');
            }
        }

        function downloadImage(url, filename) {
            const a = document.createElement('a');
            a.href = url;
            a.download = filename;
            document.body.appendChild(a);
            a.click();
            document.body.removeChild(a);
        }

        // Initialize chart
        document.addEventListener('DOMContentLoaded', function() {
            const ctx = document.getElementById('metrics-chart').getContext('2d');
            const chart = new Chart(ctx, {
                type: 'bar',
                data: {
                    labels: ['IoU', 'Precision', 'Recall', 'Dice'],
                    datasets: [{
                        label: 'Model Metrics',
                        data: [0.85, 0.88, 0.82, 0.87], // Replace with your model's actual metrics
                        backgroundColor: [
                            'rgba(59, 130, 246, 0.7)',
                            'rgba(16, 185, 129, 0.7)',
                            'rgba(245, 158, 11, 0.7)',
                            'rgba(139, 92, 246, 0.7)'
                        ],
                        borderColor: [
                            'rgba(59, 130, 246, 1)',
                            'rgba(16, 185, 129, 1)',
                            'rgba(245, 158, 11, 1)',
                            'rgba(139, 92, 246, 1)'
                        ],
                        borderWidth: 1
                    }]
                },
                options: {
                    responsive: true,
                    maintainAspectRatio: false,
                    scales: {
                        y: {
                            beginAtZero: true,
                            max: 1.0
                        }
                    },
                    plugins: {
                        legend: {
                            display: false
                        }
                    }
                }
            });
        });

        // MODEL INTEGRATION GUIDE
        // -----------------------
        // To integrate your custom segmentation model, you have two main options:
        
        // 1. Flask Backend Approach (Recommended for production)
        // ------------------------------------------------------
        // - Create a Flask server that loads your model
        // - The server should have an endpoint (e.g., /process) that:
        //   - Receives the image file
        //   - Processes it using your model
        //   - Returns the segmentation mask and statistics
        // - In this HTML file, modify the processImage() function to call your Flask endpoint
        
        // Example Flask server structure:
        /*
        from flask import Flask, request, jsonify
        import your_segmentation_module
        import base64
        import io
        from PIL import Image
        
        app = Flask(__name__)
        
        # Load your model (replace with your actual model path)
        model = your_segmentation_module.YourSegmentationModel()
        model.load_state_dict(torch.load('path/to/your/model.pth'))
        model.eval()
        
        @app.route('/process', methods=['POST'])
        def process_image():
            if 'image' not in request.files:
                return jsonify({'error': 'No image provided'}), 400
                
            image_file = request.files['image']
            image = Image.open(image_file.stream)
            
            # Process image with your model
            mask, fg_area, bg_area, confidence = model.process(image)
            
            # Convert mask to base64
            buffered = io.BytesIO()
            mask.save(buffered, format="PNG")
            mask_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
            
            return jsonify({
                'mask': mask_base64,
                'foreground_area': fg_area,
                'background_area': bg_area,
                'confidence': confidence
            })
        
        if __name__ == '__main__':
            app.run(debug=True)
        */
        
        // 2. Pyodide Approach (For browser-only implementation)
        // ----------------------------------------------------
        // - This runs Python directly in the browser using WebAssembly
        // - Limitations: Larger initial load time, limited package support
        // - Steps:
        //   a. Include Pyodide in your project
        //   b. Convert your model to a format that can be loaded in Pyodide
        //   c. Modify the processImage() function to use Pyodide
        
        // Model Path Configuration:
        // -------------------------
        // Wherever you see 'path/to/your/model.pth' in the code comments,
        // replace it with the actual path to your trained model file.
        // This could be:
        // - A relative path from your Flask server's root directory
        // - An absolute path on your server
        // - A URL if hosting the model file online
    </script>
<p style="border-radius: 8px; text-align: center; font-size: 12px; color: #fff; margin-top: 16px;position: fixed; left: 8px; bottom: 8px; z-index: 10; background: rgba(0, 0, 0, 0.8); padding: 4px 8px;">Made with <img src="https://enzostvs-deepsite.hf.space/logo.svg" alt="DeepSite Logo" style="width: 16px; height: 16px; vertical-align: middle;display:inline-block;margin-right:3px;filter:brightness(0) invert(1);"><a href="https://enzostvs-deepsite.hf.space" style="color: #fff;text-decoration: underline;" target="_blank" >DeepSite</a> - 🧬 <a href="https://enzostvs-deepsite.hf.space?remix=vishnumeher/amb" style="color: #fff;text-decoration: underline;" target="_blank" >Remix</a></p></body>
</html>