File size: 6,447 Bytes
2908104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
408074d
2908104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
408074d
2908104
 
408074d
2908104
 
 
 
408074d
 
 
 
 
 
 
2908104
 
 
408074d
 
 
 
 
2908104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
408074d
2908104
408074d
2908104
 
 
408074d
 
2908104
 
 
 
 
 
 
 
 
 
 
408074d
2908104
 
408074d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import os
import numpy as np
import time
import random
import torch
import torchvision.transforms as transforms
import gradio as gr
import matplotlib.pyplot as plt

from models import get_model
from dotmap import DotMap
from PIL import Image

#os.environ['TERM'] = 'linux'
#os.environ['TERMINFO'] = '/etc/terminfo'

# args
args = DotMap()
args.deploy = 'vanilla'
args.arch = 'dino_small_patch16'
args.no_pretrain = True
args.resume = 'https://huggingface.co/hushell/pmf_dinosmall_lr1e-4/resolve/main/best_converted.pth'
args.api_key = 'AIzaSyAFkOGnXhy-2ZB0imDvNNqf2rHb98vR_qY'
args.cx = '06d75168141bc47f1'


# model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = get_model(args)
model.to(device)
checkpoint = torch.hub.load_state_dict_from_url(args.resume, map_location='cpu')
model.load_state_dict(checkpoint['model'], strict=True)


# image transforms
def test_transform():
    def _convert_image_to_rgb(im):
        return im.convert('RGB')

    return transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        _convert_image_to_rgb,
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225]),
        ])

preprocess = test_transform()

@torch.no_grad()
def denormalize(x, mean, std):
    # 3, H, W
    t = x.clone()
    t.mul_(std).add_(mean)
    return torch.clamp(t, 0, 1)


# Gradio UI
def inference(query, *support_text_box_and_files):
    '''
    query: PIL image
    class_names: list of class names
    '''



    labels = support_text_box_and_files[0::2]
    support_images = support_text_box_and_files[1::2]

    print(f"Support images: {support_images}")

    #first, open the images
    support_images = [[Image.open(img) for img in imgs] for imgs in support_images if imgs != None]

    supp_x = []
    supp_y = []
    for i, support_imgs in enumerate(support_images):
    #for i, (class_name, support_imgs) in enumerate(zip(class_names, support_images)):
        if len(support_imgs) == 0:
            continue 
        for img in support_imgs:
            x_im = preprocess(img)
            supp_x.append(x_im)
            supp_y.append(i)


    supp_x = torch.stack(supp_x, dim=0).unsqueeze(0).to(device) # (1, n_supp*n_labels, 3, H, W)
    supp_y = torch.tensor(supp_y).long().unsqueeze(0).to(device) # (1, n_supp*n_labels)

    query = preprocess(query).unsqueeze(0).unsqueeze(0).to(device) # (1, 3, H, W)

    print(f"Shape of supp_x: {supp_x.shape}")
    print(f"Shape of supp_y: {supp_y.shape}")
    print(f"Shape of query: {query.shape}")



    with torch.cuda.amp.autocast(True):
        start_time = time.time()
        output = model(supp_x, supp_y, query) # (1, 1, n_labels)
        exec_time = time.time() - start_time

    probs = output.softmax(dim=-1).detach().cpu().numpy()
    

    return {k: float(v) for k, v in zip(labels, probs[0, 0])}, exec_time


# DEBUG
##query = Image.open('../labrador-puppy.jpg')
#query = Image.open('/Users/hushell/Documents/Dan_tr.png')
##labels = 'dog, cat'
#labels = 'girl, sussie'
#output = inference(query, labels, n_supp=2)
#print(output)


title = "# P>M>F few-shot learning pipeline"
description = "Short description: We take a ViT-small backbone, which is pre-trained with DINO, and meta-trained on Meta-Dataset; for few-shot classification, we use a ProtoNet classifier. The demo can be viewed as zero-shot since the support set is built by searching images from Google. Note that you may need to play with GIS parameters to get good support examples. Besides, GIS is not very stable as search requests may fail for many reasons (e.g., number of requests reaches the limit of the day). This code is heavely inspired from the original HF space <a href='https://huggingface.co/spaces/hushell/pmf_with_gis' target='_blank'>here</a>"
article = "<p style='text-align: center'><a href='http://arxiv.org/abs/2204.07305' target='_blank'>Arxiv</a></p>"

min_classes = 2
max_classes = 10


def variable_outputs(k):
    k = int(k)
    inputs = []
    for _ in range(k):
        inputs.append(gr.Textbox(visible=True))
        inputs.append(gr.File(visible=True))
    
    for _ in range(max_classes-k):
        inputs.append(gr.Textbox(visible=False))
        inputs.append(gr.File(visible=False))

    return inputs

with gr.Blocks() as demo:

    
    with gr.Row():
        gr.Markdown(title)
    with gr.Row():
        gr.Markdown(description)
    with gr.Row():
        gr.Markdown(article)
    with gr.Row():
        with gr.Column():


            query = gr.Image(label="Image to classify", type="pil")
            num_classes_slider = gr.Slider(minimum=min_classes, maximum=10, value=2, label="Number of classes", step=1)
            
            #set_number_classes_btn = gr.Button("Set number of classes")

            textboxes_and_files = []
            for i in range(max_classes):
                is_visible = (i < 2) 
                t = gr.Textbox(label=f"Class {i+1} name", placeholder=f"Enter class {i+1} name", visible=is_visible)
                textboxes_and_files.append(t)
                f = gr.File(label=f"Support image for class {i+1}", type="filepath", visible=is_visible, file_count="multiple")
                textboxes_and_files.append(f)
            



            num_classes_slider.change(variable_outputs, inputs=[num_classes_slider], outputs=textboxes_and_files)


            run_button = gr.Button("Run Inference")

        with gr.Column():
            output = gr.Label(label="Predicted class probabilities")
            exec_time = gr.Textbox(label="Execution time (s)")


#    def run_inference(query, *example_inputs):
#        
#        print("len(example_inputs) : ")
#        print(len(example_inputs))
#
#        class_names = [example_inputs[i].value for i in range(0, len(example_inputs), 2)]
#        support_images = [example_inputs[i].value for i in range(1, len(example_inputs), 2)]
#        return inference(query, class_names, support_images)

    run_button.click(
        fn=inference,
        inputs=[query] + textboxes_and_files,
        outputs=[output, exec_time]
    )
    

    # this does nothing it seems
    demo.examples = [
        ["./example_images/2007_000033.jpg", "plane", ["./example_images/2007_000738.jpg", "./example_images/2007_000256.jpg"], "cat", ["./example_images/2007_000528.jpg", "./example_images/2007_000549.jpg"]]
    ]
    demo.launch()