Spaces:
Sleeping
Sleeping
File size: 6,447 Bytes
2908104 408074d 2908104 408074d 2908104 408074d 2908104 408074d 2908104 408074d 2908104 408074d 2908104 408074d 2908104 408074d 2908104 408074d 2908104 408074d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import os
import numpy as np
import time
import random
import torch
import torchvision.transforms as transforms
import gradio as gr
import matplotlib.pyplot as plt
from models import get_model
from dotmap import DotMap
from PIL import Image
#os.environ['TERM'] = 'linux'
#os.environ['TERMINFO'] = '/etc/terminfo'
# args
args = DotMap()
args.deploy = 'vanilla'
args.arch = 'dino_small_patch16'
args.no_pretrain = True
args.resume = 'https://huggingface.co/hushell/pmf_dinosmall_lr1e-4/resolve/main/best_converted.pth'
args.api_key = 'AIzaSyAFkOGnXhy-2ZB0imDvNNqf2rHb98vR_qY'
args.cx = '06d75168141bc47f1'
# model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = get_model(args)
model.to(device)
checkpoint = torch.hub.load_state_dict_from_url(args.resume, map_location='cpu')
model.load_state_dict(checkpoint['model'], strict=True)
# image transforms
def test_transform():
def _convert_image_to_rgb(im):
return im.convert('RGB')
return transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
_convert_image_to_rgb,
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
preprocess = test_transform()
@torch.no_grad()
def denormalize(x, mean, std):
# 3, H, W
t = x.clone()
t.mul_(std).add_(mean)
return torch.clamp(t, 0, 1)
# Gradio UI
def inference(query, *support_text_box_and_files):
'''
query: PIL image
class_names: list of class names
'''
labels = support_text_box_and_files[0::2]
support_images = support_text_box_and_files[1::2]
print(f"Support images: {support_images}")
#first, open the images
support_images = [[Image.open(img) for img in imgs] for imgs in support_images if imgs != None]
supp_x = []
supp_y = []
for i, support_imgs in enumerate(support_images):
#for i, (class_name, support_imgs) in enumerate(zip(class_names, support_images)):
if len(support_imgs) == 0:
continue
for img in support_imgs:
x_im = preprocess(img)
supp_x.append(x_im)
supp_y.append(i)
supp_x = torch.stack(supp_x, dim=0).unsqueeze(0).to(device) # (1, n_supp*n_labels, 3, H, W)
supp_y = torch.tensor(supp_y).long().unsqueeze(0).to(device) # (1, n_supp*n_labels)
query = preprocess(query).unsqueeze(0).unsqueeze(0).to(device) # (1, 3, H, W)
print(f"Shape of supp_x: {supp_x.shape}")
print(f"Shape of supp_y: {supp_y.shape}")
print(f"Shape of query: {query.shape}")
with torch.cuda.amp.autocast(True):
start_time = time.time()
output = model(supp_x, supp_y, query) # (1, 1, n_labels)
exec_time = time.time() - start_time
probs = output.softmax(dim=-1).detach().cpu().numpy()
return {k: float(v) for k, v in zip(labels, probs[0, 0])}, exec_time
# DEBUG
##query = Image.open('../labrador-puppy.jpg')
#query = Image.open('/Users/hushell/Documents/Dan_tr.png')
##labels = 'dog, cat'
#labels = 'girl, sussie'
#output = inference(query, labels, n_supp=2)
#print(output)
title = "# P>M>F few-shot learning pipeline"
description = "Short description: We take a ViT-small backbone, which is pre-trained with DINO, and meta-trained on Meta-Dataset; for few-shot classification, we use a ProtoNet classifier. The demo can be viewed as zero-shot since the support set is built by searching images from Google. Note that you may need to play with GIS parameters to get good support examples. Besides, GIS is not very stable as search requests may fail for many reasons (e.g., number of requests reaches the limit of the day). This code is heavely inspired from the original HF space <a href='https://huggingface.co/spaces/hushell/pmf_with_gis' target='_blank'>here</a>"
article = "<p style='text-align: center'><a href='http://arxiv.org/abs/2204.07305' target='_blank'>Arxiv</a></p>"
min_classes = 2
max_classes = 10
def variable_outputs(k):
k = int(k)
inputs = []
for _ in range(k):
inputs.append(gr.Textbox(visible=True))
inputs.append(gr.File(visible=True))
for _ in range(max_classes-k):
inputs.append(gr.Textbox(visible=False))
inputs.append(gr.File(visible=False))
return inputs
with gr.Blocks() as demo:
with gr.Row():
gr.Markdown(title)
with gr.Row():
gr.Markdown(description)
with gr.Row():
gr.Markdown(article)
with gr.Row():
with gr.Column():
query = gr.Image(label="Image to classify", type="pil")
num_classes_slider = gr.Slider(minimum=min_classes, maximum=10, value=2, label="Number of classes", step=1)
#set_number_classes_btn = gr.Button("Set number of classes")
textboxes_and_files = []
for i in range(max_classes):
is_visible = (i < 2)
t = gr.Textbox(label=f"Class {i+1} name", placeholder=f"Enter class {i+1} name", visible=is_visible)
textboxes_and_files.append(t)
f = gr.File(label=f"Support image for class {i+1}", type="filepath", visible=is_visible, file_count="multiple")
textboxes_and_files.append(f)
num_classes_slider.change(variable_outputs, inputs=[num_classes_slider], outputs=textboxes_and_files)
run_button = gr.Button("Run Inference")
with gr.Column():
output = gr.Label(label="Predicted class probabilities")
exec_time = gr.Textbox(label="Execution time (s)")
# def run_inference(query, *example_inputs):
#
# print("len(example_inputs) : ")
# print(len(example_inputs))
#
# class_names = [example_inputs[i].value for i in range(0, len(example_inputs), 2)]
# support_images = [example_inputs[i].value for i in range(1, len(example_inputs), 2)]
# return inference(query, class_names, support_images)
run_button.click(
fn=inference,
inputs=[query] + textboxes_and_files,
outputs=[output, exec_time]
)
# this does nothing it seems
demo.examples = [
["./example_images/2007_000033.jpg", "plane", ["./example_images/2007_000738.jpg", "./example_images/2007_000256.jpg"], "cat", ["./example_images/2007_000528.jpg", "./example_images/2007_000549.jpg"]]
]
demo.launch()
|