bear_not_bear / app.py
vinayp27's picture
Add Saliency maps and classification model
dc441f1
from fastai.vision.all import *
import gradio as gr
from captum.attr import Saliency
from torchvision import transforms
import matplotlib.pyplot as plt
import numpy as np
import torch
learn = load_learner('animal_model.pkl')
transform = transforms.Compose([
transforms.Resize((128,128)),
transforms.ToTensor(),
])
categories = learn.dls.vocab
def generate_saliency(image):
# Prepare the image for the model
img = PILImage.create(image)
# Get prediction
_, pred, probs = learn.predict(img)
# Create Captum interpretation object
interp = Saliency(learn.model)
# Transform and prepare image for saliency
tensor_image = transform(img).unsqueeze(0)
tensor_image = tensor_image.requires_grad_()
# Generate the saliency map
saliency_map = interp.attribute(tensor_image, target=pred)
# Process saliency map for visualization
saliency_np = saliency_map.squeeze().cpu().detach().numpy()
saliency_np = np.abs(saliency_np).sum(axis=0)
#saliency_np = (saliency_np - saliency_np.min()) / (saliency_np.max() - saliency_np.min())
# Create heatmap
plt.figure(figsize=(10, 10))
plt.imshow(saliency_np, cmap='viridis')
plt.axis('off')
plt.tight_layout()
plt.savefig('saliency_heatmap.png', pad_inches=0)
plt.close()
return (
dict(zip(categories, map(float, probs))),
'saliency_heatmap.png',
'saliency_overlay.png'
)
# Gradio interface
image = gr.Image(type="pil")
label = gr.Label()
examples = ['polar_bear_real.jpg', 'polar_bear.jpg']
interface = gr.Interface(
fn=generate_saliency,
inputs=image,
outputs=[
gr.Label(label="Predictions"),
gr.Image(type="filepath", label="Saliency Heatmap")
],
examples=examples
)
interface.launch()