File size: 14,136 Bytes
0d34ea8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
"""
GPU monitoring tab for Video Model Studio UI.
Displays detailed GPU metrics and visualizations.
"""

import gradio as gr
import time
import logging
from pathlib import Path
import os
from typing import Dict, Any, List, Optional, Tuple
from datetime import datetime, timedelta

from vms.utils.base_tab import BaseTab
from vms.ui.monitoring.utils import human_readable_size

logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)

class GPUTab(BaseTab):
    """Tab for GPU-specific monitoring and statistics"""
    
    def __init__(self, app_state):
        super().__init__(app_state)
        self.id = "GPU_tab"
        self.title = "GPU Stats"
        self.refresh_interval = 5
        self.selected_gpu = 0
    
    def create(self, parent=None) -> gr.TabItem:
        """Create the GPU tab UI components"""
        with gr.TabItem(self.title, id=self.id) as tab:
            with gr.Row():
                gr.Markdown("## 🖥️ GPU Monitoring")
            
            # No GPUs available message (hidden by default)
            with gr.Row(visible=not self.app.monitoring.gpu.has_nvidia_gpus):
                with gr.Column():
                    gr.Markdown("### No NVIDIA GPUs detected")
                    gr.Markdown("GPU monitoring is only available for NVIDIA GPUs. If you have NVIDIA GPUs installed, ensure the drivers are properly configured.")
            
            # GPU content (only visible if GPUs are available)
            with gr.Row(visible=self.app.monitoring.gpu.has_nvidia_gpus):
                # GPU selector if multiple GPUs
                if self.app.monitoring.gpu.gpu_count > 1:
                    with gr.Column(scale=1):
                        gpu_options = [f"GPU {i}" for i in range(self.app.monitoring.gpu.gpu_count)]
                        self.components["gpu_selector"] = gr.Dropdown(
                            choices=gpu_options,
                            value=gpu_options[0] if gpu_options else None,
                            label="Select GPU",
                            interactive=True
                        )
                
                # Current metrics
                with gr.Column(scale=3):
                    self.components["current_metrics"] = gr.Markdown("Loading GPU metrics...")
            
            # Display GPU metrics in tabs
            with gr.Tabs(visible=self.app.monitoring.gpu.has_nvidia_gpus) as metrics_tabs:
                with gr.Tab(label="Utilization") as util_tab:
                    self.components["utilization_plot"] = gr.Plot()
                
                with gr.Tab(label="Memory") as memory_tab:
                    self.components["memory_plot"] = gr.Plot()
                
                with gr.Tab(label="Power") as power_tab:
                    self.components["power_plot"] = gr.Plot()
            
            # Process information
            with gr.Row(visible=self.app.monitoring.gpu.has_nvidia_gpus):
                with gr.Column():
                    gr.Markdown("### Active Processes")
                    self.components["process_info"] = gr.Markdown("Loading process information...")
            
            # GPU information summary
            with gr.Row(visible=self.app.monitoring.gpu.has_nvidia_gpus):
                with gr.Column():
                    gr.Markdown("### GPU Information")
                    self.components["gpu_info"] = gr.Markdown("Loading GPU information...")
            
            # Toggle for enabling/disabling auto-refresh
            with gr.Row():
                self.components["auto_refresh"] = gr.Checkbox(
                    label=f"Auto refresh (every {self.refresh_interval} seconds)",
                    value=True,
                    info="Automatically refresh GPU metrics"
                )
                self.components["refresh_btn"] = gr.Button("Refresh Now")
            
            # Timer for auto-refresh
            self.components["refresh_timer"] = gr.Timer(
                value=self.refresh_interval
            )
        
        return tab
    
    def connect_events(self) -> None:
        """Connect event handlers to UI components"""
        # GPU selector (if multiple GPUs)
        if self.app.monitoring.gpu.gpu_count > 1 and "gpu_selector" in self.components:
            self.components["gpu_selector"].change(
                fn=self.update_selected_gpu,
                inputs=[self.components["gpu_selector"]],
                outputs=[
                    self.components["current_metrics"],
                    self.components["utilization_plot"],
                    self.components["memory_plot"],
                    self.components["power_plot"],
                    self.components["process_info"],
                    self.components["gpu_info"]
                ]
            )
        
        # Manual refresh button
        self.components["refresh_btn"].click(
            fn=self.refresh_all,
            outputs=[
                self.components["current_metrics"],
                self.components["utilization_plot"],
                self.components["memory_plot"],
                self.components["power_plot"],
                self.components["process_info"],
                self.components["gpu_info"]
            ]
        )
        
        # Auto-refresh timer
        self.components["refresh_timer"].tick(
            fn=self.conditional_refresh,
            inputs=[self.components["auto_refresh"]],
            outputs=[
                self.components["current_metrics"],
                self.components["utilization_plot"],
                self.components["memory_plot"],
                self.components["power_plot"],
                self.components["process_info"],
                self.components["gpu_info"]
            ]
        )
    
    def on_enter(self):
        """Called when the tab is selected"""
        # Trigger initial refresh
        return self.refresh_all()
    
    def update_selected_gpu(self, gpu_selector: str) -> Tuple:
        """Update the selected GPU and refresh data
        
        Args:
            gpu_selector: Selected GPU string ("GPU X")
            
        Returns:
            Updated components
        """
        # Extract GPU index from selector string
        try:
            self.selected_gpu = int(gpu_selector.replace("GPU ", ""))
        except (ValueError, AttributeError):
            self.selected_gpu = 0
        
        # Refresh all components with the new selected GPU
        return self.refresh_all()
    
    def conditional_refresh(self, auto_refresh: bool) -> Tuple:
        """Only refresh if auto-refresh is enabled
        
        Args:
            auto_refresh: Whether auto-refresh is enabled
            
        Returns:
            Updated components or unchanged components
        """
        if auto_refresh:
            return self.refresh_all()
        
        # Return current values unchanged if auto-refresh is disabled
        return (
            self.components["current_metrics"].value,
            self.components["utilization_plot"].value,
            self.components["memory_plot"].value,
            self.components["power_plot"].value,
            self.components["process_info"].value,
            self.components["gpu_info"].value
        )
    
    def refresh_all(self) -> Tuple:
        """Refresh all GPU monitoring components
        
        Returns:
            Updated values for all components
        """
        try:
            if not self.app.monitoring.gpu.has_nvidia_gpus:
                return (
                    "No NVIDIA GPUs detected",
                    None,
                    None,
                    None,
                    "No process information available",
                    "No GPU information available"
                )
            
            # Get current metrics for the selected GPU
            all_metrics = self.app.monitoring.gpu.get_current_metrics()
            if not all_metrics or self.selected_gpu >= len(all_metrics):
                return (
                    "GPU metrics not available",
                    None,
                    None,
                    None,
                    "No process information available",
                    "No GPU information available"
                )
            
            # Get selected GPU metrics
            gpu_metrics = all_metrics[self.selected_gpu]
            
            # Format current metrics as markdown
            metrics_html = self.format_current_metrics(gpu_metrics)
            
            # Format process information
            process_info_html = self.format_process_info(gpu_metrics)
            
            # Format GPU information
            gpu_info = self.app.monitoring.gpu.get_gpu_info()
            gpu_info_html = self.format_gpu_info(gpu_info[self.selected_gpu] if self.selected_gpu < len(gpu_info) else {})
            
            # Generate plots
            utilization_plot = self.app.monitoring.gpu.generate_utilization_plot(self.selected_gpu)
            memory_plot = self.app.monitoring.gpu.generate_memory_plot(self.selected_gpu)
            power_plot = self.app.monitoring.gpu.generate_power_plot(self.selected_gpu)
            
            return (
                metrics_html,
                utilization_plot,
                memory_plot,
                power_plot,
                process_info_html,
                gpu_info_html
            )
            
        except Exception as e:
            logger.error(f"Error refreshing GPU data: {str(e)}", exc_info=True)
            error_msg = f"Error retrieving GPU data: {str(e)}"
            return (
                error_msg,
                None,
                None,
                None,
                error_msg,
                error_msg
            )
    
    def format_current_metrics(self, metrics: Dict[str, Any]) -> str:
        """Format current GPU metrics as HTML/Markdown
        
        Args:
            metrics: Current metrics dictionary
            
        Returns:
            Formatted HTML/Markdown string
        """
        if 'error' in metrics:
            return f"Error retrieving GPU metrics: {metrics['error']}"
        
        # Format timestamp
        if isinstance(metrics.get('timestamp'), datetime):
            timestamp_str = metrics['timestamp'].strftime('%Y-%m-%d %H:%M:%S')
        else:
            timestamp_str = "Unknown"
        
        # Style for GPU utilization
        util_style = "color: green;"
        if metrics.get('utilization_gpu', 0) > 90:
            util_style = "color: red; font-weight: bold;"
        elif metrics.get('utilization_gpu', 0) > 70:
            util_style = "color: orange;"
        
        # Style for memory usage
        mem_style = "color: green;"
        if metrics.get('memory_percent', 0) > 90:
            mem_style = "color: red; font-weight: bold;"
        elif metrics.get('memory_percent', 0) > 70:
            mem_style = "color: orange;"
        
        # Style for temperature
        temp_style = "color: green;"
        temp = metrics.get('temperature', 0)
        if temp > 85:
            temp_style = "color: red; font-weight: bold;"
        elif temp > 75:
            temp_style = "color: orange;"
        
        # Memory usage in GB
        memory_used_gb = metrics.get('memory_used', 0) / (1024**3)
        memory_total_gb = metrics.get('memory_total', 0) / (1024**3)
        
        # Power usage and limit
        power_html = ""
        if metrics.get('power_usage') is not None:
            power_html = f"**Power Usage:** {metrics['power_usage']:.1f}W\n"
        
        html = f"""
### Current Status as of {timestamp_str}

**GPU Utilization:** <span style="{util_style}">{metrics.get('utilization_gpu', 0):.1f}%</span>  
**Memory Usage:** <span style="{mem_style}">{metrics.get('memory_percent', 0):.1f}% ({memory_used_gb:.2f}/{memory_total_gb:.2f} GB)</span>  
**Temperature:** <span style="{temp_style}">{metrics.get('temperature', 0)}°C</span>  
{power_html}
"""
        return html
    def format_process_info(self, metrics: Dict[str, Any]) -> str:
        """Format GPU process information as HTML/Markdown
        
        Args:
            metrics: Current metrics dictionary with process information
            
        Returns:
            Formatted HTML/Markdown string
        """
        if 'error' in metrics:
            return "Process information not available"
            
        processes = metrics.get('processes', [])
        if not processes:
            return "No active processes using this GPU"
            
        # Sort processes by memory usage (descending)
        sorted_processes = sorted(processes, key=lambda p: p.get('memory_used', 0), reverse=True)
        
        html = "| PID | Process Name | Memory Usage |\n"
        html += "|-----|-------------|-------------|\n"
        
        for proc in sorted_processes:
            pid = proc.get('pid', 'Unknown')
            name = proc.get('name', 'Unknown')
            mem_mb = proc.get('memory_used', 0) / (1024**2)  # Convert to MB
            
            html += f"| {pid} | {name} | {mem_mb:.1f} MB |\n"
            
        return html
    
    def format_gpu_info(self, info: Dict[str, Any]) -> str:
        """Format GPU information as HTML/Markdown
        
        Args:
            info: GPU information dictionary
            
        Returns:
            Formatted HTML/Markdown string
        """
        if 'error' in info:
            return f"GPU information not available: {info.get('error', 'Unknown error')}"
            
        # Format memory in GB
        memory_total_gb = info.get('memory_total', 0) / (1024**3)
        
        html = f"""
**Name:** {info.get('name', 'Unknown')}  
**Memory:** {memory_total_gb:.2f} GB  
**UUID:** {info.get('uuid', 'N/A')}  
**Compute Capability:** {info.get('compute_capability', 'N/A')}
"""

        # Add power limit if available
        if info.get('power_limit') is not None:
            html += f"**Power Limit:** {info['power_limit']:.1f}W\n"
            
        return html