vilarin's picture
Upload 63 files
2ba49a8 verified
raw
history blame contribute delete
20.2 kB
from .attention import Attention
from .tiler import TileWorker
from einops import repeat, rearrange
import math
import torch
class HunyuanDiTRotaryEmbedding(torch.nn.Module):
def __init__(self, q_norm_shape=88, k_norm_shape=88, rotary_emb_on_k=True):
super().__init__()
self.q_norm = torch.nn.LayerNorm((q_norm_shape,), elementwise_affine=True, eps=1e-06)
self.k_norm = torch.nn.LayerNorm((k_norm_shape,), elementwise_affine=True, eps=1e-06)
self.rotary_emb_on_k = rotary_emb_on_k
self.k_cache, self.v_cache = [], []
def reshape_for_broadcast(self, freqs_cis, x):
ndim = x.ndim
shape = [d if i == ndim - 2 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
return freqs_cis[0].view(*shape), freqs_cis[1].view(*shape)
def rotate_half(self, x):
x_real, x_imag = x.float().reshape(*x.shape[:-1], -1, 2).unbind(-1)
return torch.stack([-x_imag, x_real], dim=-1).flatten(3)
def apply_rotary_emb(self, xq, xk, freqs_cis):
xk_out = None
cos, sin = self.reshape_for_broadcast(freqs_cis, xq)
cos, sin = cos.to(xq.device), sin.to(xq.device)
xq_out = (xq.float() * cos + self.rotate_half(xq.float()) * sin).type_as(xq)
if xk is not None:
xk_out = (xk.float() * cos + self.rotate_half(xk.float()) * sin).type_as(xk)
return xq_out, xk_out
def forward(self, q, k, v, freqs_cis_img, to_cache=False):
# norm
q = self.q_norm(q)
k = self.k_norm(k)
# RoPE
if self.rotary_emb_on_k:
q, k = self.apply_rotary_emb(q, k, freqs_cis_img)
else:
q, _ = self.apply_rotary_emb(q, None, freqs_cis_img)
if to_cache:
self.k_cache.append(k)
self.v_cache.append(v)
elif len(self.k_cache) > 0 and len(self.v_cache) > 0:
k = torch.concat([k] + self.k_cache, dim=2)
v = torch.concat([v] + self.v_cache, dim=2)
self.k_cache, self.v_cache = [], []
return q, k, v
class FP32_Layernorm(torch.nn.LayerNorm):
def forward(self, inputs):
origin_dtype = inputs.dtype
return torch.nn.functional.layer_norm(inputs.float(), self.normalized_shape, self.weight.float(), self.bias.float(), self.eps).to(origin_dtype)
class FP32_SiLU(torch.nn.SiLU):
def forward(self, inputs):
origin_dtype = inputs.dtype
return torch.nn.functional.silu(inputs.float(), inplace=False).to(origin_dtype)
class HunyuanDiTFinalLayer(torch.nn.Module):
def __init__(self, final_hidden_size=1408, condition_dim=1408, patch_size=2, out_channels=8):
super().__init__()
self.norm_final = torch.nn.LayerNorm(final_hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = torch.nn.Linear(final_hidden_size, patch_size * patch_size * out_channels, bias=True)
self.adaLN_modulation = torch.nn.Sequential(
FP32_SiLU(),
torch.nn.Linear(condition_dim, 2 * final_hidden_size, bias=True)
)
def modulate(self, x, shift, scale):
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
def forward(self, hidden_states, condition_emb):
shift, scale = self.adaLN_modulation(condition_emb).chunk(2, dim=1)
hidden_states = self.modulate(self.norm_final(hidden_states), shift, scale)
hidden_states = self.linear(hidden_states)
return hidden_states
class HunyuanDiTBlock(torch.nn.Module):
def __init__(
self,
hidden_dim=1408,
condition_dim=1408,
num_heads=16,
mlp_ratio=4.3637,
text_dim=1024,
skip_connection=False
):
super().__init__()
self.norm1 = FP32_Layernorm((hidden_dim,), eps=1e-6, elementwise_affine=True)
self.rota1 = HunyuanDiTRotaryEmbedding(hidden_dim//num_heads, hidden_dim//num_heads)
self.attn1 = Attention(hidden_dim, num_heads, hidden_dim//num_heads, bias_q=True, bias_kv=True, bias_out=True)
self.norm2 = FP32_Layernorm((hidden_dim,), eps=1e-6, elementwise_affine=True)
self.rota2 = HunyuanDiTRotaryEmbedding(hidden_dim//num_heads, hidden_dim//num_heads, rotary_emb_on_k=False)
self.attn2 = Attention(hidden_dim, num_heads, hidden_dim//num_heads, kv_dim=text_dim, bias_q=True, bias_kv=True, bias_out=True)
self.norm3 = FP32_Layernorm((hidden_dim,), eps=1e-6, elementwise_affine=True)
self.modulation = torch.nn.Sequential(FP32_SiLU(), torch.nn.Linear(condition_dim, hidden_dim, bias=True))
self.mlp = torch.nn.Sequential(
torch.nn.Linear(hidden_dim, int(hidden_dim*mlp_ratio), bias=True),
torch.nn.GELU(approximate="tanh"),
torch.nn.Linear(int(hidden_dim*mlp_ratio), hidden_dim, bias=True)
)
if skip_connection:
self.skip_norm = FP32_Layernorm((hidden_dim * 2,), eps=1e-6, elementwise_affine=True)
self.skip_linear = torch.nn.Linear(hidden_dim * 2, hidden_dim, bias=True)
else:
self.skip_norm, self.skip_linear = None, None
def forward(self, hidden_states, condition_emb, text_emb, freq_cis_img, residual=None, to_cache=False):
# Long Skip Connection
if self.skip_norm is not None and self.skip_linear is not None:
hidden_states = torch.cat([hidden_states, residual], dim=-1)
hidden_states = self.skip_norm(hidden_states)
hidden_states = self.skip_linear(hidden_states)
# Self-Attention
shift_msa = self.modulation(condition_emb).unsqueeze(dim=1)
attn_input = self.norm1(hidden_states) + shift_msa
hidden_states = hidden_states + self.attn1(attn_input, qkv_preprocessor=lambda q, k, v: self.rota1(q, k, v, freq_cis_img, to_cache=to_cache))
# Cross-Attention
attn_input = self.norm3(hidden_states)
hidden_states = hidden_states + self.attn2(attn_input, text_emb, qkv_preprocessor=lambda q, k, v: self.rota2(q, k, v, freq_cis_img))
# FFN Layer
mlp_input = self.norm2(hidden_states)
hidden_states = hidden_states + self.mlp(mlp_input)
return hidden_states
class AttentionPool(torch.nn.Module):
def __init__(self, spacial_dim, embed_dim, num_heads, output_dim = None):
super().__init__()
self.positional_embedding = torch.nn.Parameter(torch.randn(spacial_dim + 1, embed_dim) / embed_dim ** 0.5)
self.k_proj = torch.nn.Linear(embed_dim, embed_dim)
self.q_proj = torch.nn.Linear(embed_dim, embed_dim)
self.v_proj = torch.nn.Linear(embed_dim, embed_dim)
self.c_proj = torch.nn.Linear(embed_dim, output_dim or embed_dim)
self.num_heads = num_heads
def forward(self, x):
x = x.permute(1, 0, 2) # NLC -> LNC
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (L+1)NC
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (L+1)NC
x, _ = torch.nn.functional.multi_head_attention_forward(
query=x[:1], key=x, value=x,
embed_dim_to_check=x.shape[-1],
num_heads=self.num_heads,
q_proj_weight=self.q_proj.weight,
k_proj_weight=self.k_proj.weight,
v_proj_weight=self.v_proj.weight,
in_proj_weight=None,
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
bias_k=None,
bias_v=None,
add_zero_attn=False,
dropout_p=0,
out_proj_weight=self.c_proj.weight,
out_proj_bias=self.c_proj.bias,
use_separate_proj_weight=True,
training=self.training,
need_weights=False
)
return x.squeeze(0)
class PatchEmbed(torch.nn.Module):
def __init__(
self,
patch_size=(2, 2),
in_chans=4,
embed_dim=1408,
bias=True,
):
super().__init__()
self.proj = torch.nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias)
def forward(self, x):
x = self.proj(x)
x = x.flatten(2).transpose(1, 2) # BCHW -> BNC
return x
def timestep_embedding(t, dim, max_period=10000, repeat_only=False):
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
if not repeat_only:
half = dim // 2
freqs = torch.exp(
-math.log(max_period)
* torch.arange(start=0, end=half, dtype=torch.float32)
/ half
).to(device=t.device) # size: [dim/2], 一个指数衰减的曲线
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat(
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1
)
else:
embedding = repeat(t, "b -> b d", d=dim)
return embedding
class TimestepEmbedder(torch.nn.Module):
def __init__(self, hidden_size=1408, frequency_embedding_size=256):
super().__init__()
self.mlp = torch.nn.Sequential(
torch.nn.Linear(frequency_embedding_size, hidden_size, bias=True),
torch.nn.SiLU(),
torch.nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
def forward(self, t):
t_freq = timestep_embedding(t, self.frequency_embedding_size).type(self.mlp[0].weight.dtype)
t_emb = self.mlp(t_freq)
return t_emb
class HunyuanDiT(torch.nn.Module):
def __init__(self, num_layers_down=21, num_layers_up=19, in_channels=4, out_channels=8, hidden_dim=1408, text_dim=1024, t5_dim=2048, text_length=77, t5_length=256):
super().__init__()
# Embedders
self.text_emb_padding = torch.nn.Parameter(torch.randn(text_length + t5_length, text_dim, dtype=torch.float32))
self.t5_embedder = torch.nn.Sequential(
torch.nn.Linear(t5_dim, t5_dim * 4, bias=True),
FP32_SiLU(),
torch.nn.Linear(t5_dim * 4, text_dim, bias=True),
)
self.t5_pooler = AttentionPool(t5_length, t5_dim, num_heads=8, output_dim=1024)
self.style_embedder = torch.nn.Parameter(torch.randn(hidden_dim))
self.patch_embedder = PatchEmbed(in_chans=in_channels)
self.timestep_embedder = TimestepEmbedder()
self.extra_embedder = torch.nn.Sequential(
torch.nn.Linear(256 * 6 + 1024 + hidden_dim, hidden_dim * 4),
FP32_SiLU(),
torch.nn.Linear(hidden_dim * 4, hidden_dim),
)
# Transformer blocks
self.num_layers_down = num_layers_down
self.num_layers_up = num_layers_up
self.blocks = torch.nn.ModuleList(
[HunyuanDiTBlock(skip_connection=False) for _ in range(num_layers_down)] + \
[HunyuanDiTBlock(skip_connection=True) for _ in range(num_layers_up)]
)
# Output layers
self.final_layer = HunyuanDiTFinalLayer()
self.out_channels = out_channels
def prepare_text_emb(self, text_emb, text_emb_t5, text_emb_mask, text_emb_mask_t5):
text_emb_mask = text_emb_mask.bool()
text_emb_mask_t5 = text_emb_mask_t5.bool()
text_emb_t5 = self.t5_embedder(text_emb_t5)
text_emb = torch.cat([text_emb, text_emb_t5], dim=1)
text_emb_mask = torch.cat([text_emb_mask, text_emb_mask_t5], dim=-1)
text_emb = torch.where(text_emb_mask.unsqueeze(2), text_emb, self.text_emb_padding.to(text_emb))
return text_emb
def prepare_extra_emb(self, text_emb_t5, timestep, size_emb, dtype, batch_size):
# Text embedding
pooled_text_emb_t5 = self.t5_pooler(text_emb_t5)
# Timestep embedding
timestep_emb = self.timestep_embedder(timestep)
# Size embedding
size_emb = timestep_embedding(size_emb.view(-1), 256).to(dtype)
size_emb = size_emb.view(-1, 6 * 256)
# Style embedding
style_emb = repeat(self.style_embedder, "D -> B D", B=batch_size)
# Concatenate all extra vectors
extra_emb = torch.cat([pooled_text_emb_t5, size_emb, style_emb], dim=1)
condition_emb = timestep_emb + self.extra_embedder(extra_emb)
return condition_emb
def unpatchify(self, x, h, w):
return rearrange(x, "B (H W) (P Q C) -> B C (H P) (W Q)", H=h, W=w, P=2, Q=2)
def build_mask(self, data, is_bound):
_, _, H, W = data.shape
h = repeat(torch.arange(H), "H -> H W", H=H, W=W)
w = repeat(torch.arange(W), "W -> H W", H=H, W=W)
border_width = (H + W) // 4
pad = torch.ones_like(h) * border_width
mask = torch.stack([
pad if is_bound[0] else h + 1,
pad if is_bound[1] else H - h,
pad if is_bound[2] else w + 1,
pad if is_bound[3] else W - w
]).min(dim=0).values
mask = mask.clip(1, border_width)
mask = (mask / border_width).to(dtype=data.dtype, device=data.device)
mask = rearrange(mask, "H W -> 1 H W")
return mask
def tiled_block_forward(self, block, hidden_states, condition_emb, text_emb, freq_cis_img, residual, torch_dtype, data_device, computation_device, tile_size, tile_stride):
B, C, H, W = hidden_states.shape
weight = torch.zeros((1, 1, H, W), dtype=torch_dtype, device=data_device)
values = torch.zeros((B, C, H, W), dtype=torch_dtype, device=data_device)
# Split tasks
tasks = []
for h in range(0, H, tile_stride):
for w in range(0, W, tile_stride):
if (h-tile_stride >= 0 and h-tile_stride+tile_size >= H) or (w-tile_stride >= 0 and w-tile_stride+tile_size >= W):
continue
h_, w_ = h + tile_size, w + tile_size
if h_ > H: h, h_ = H - tile_size, H
if w_ > W: w, w_ = W - tile_size, W
tasks.append((h, h_, w, w_))
# Run
for hl, hr, wl, wr in tasks:
hidden_states_batch = hidden_states[:, :, hl:hr, wl:wr].to(computation_device)
hidden_states_batch = rearrange(hidden_states_batch, "B C H W -> B (H W) C")
if residual is not None:
residual_batch = residual[:, :, hl:hr, wl:wr].to(computation_device)
residual_batch = rearrange(residual_batch, "B C H W -> B (H W) C")
else:
residual_batch = None
# Forward
hidden_states_batch = block(hidden_states_batch, condition_emb, text_emb, freq_cis_img, residual_batch).to(data_device)
hidden_states_batch = rearrange(hidden_states_batch, "B (H W) C -> B C H W", H=hr-hl)
mask = self.build_mask(hidden_states_batch, is_bound=(hl==0, hr>=H, wl==0, wr>=W))
values[:, :, hl:hr, wl:wr] += hidden_states_batch * mask
weight[:, :, hl:hr, wl:wr] += mask
values /= weight
return values
def forward(
self, hidden_states, text_emb, text_emb_t5, text_emb_mask, text_emb_mask_t5, timestep, size_emb, freq_cis_img,
tiled=False, tile_size=64, tile_stride=32,
to_cache=False,
use_gradient_checkpointing=False,
):
# Embeddings
text_emb = self.prepare_text_emb(text_emb, text_emb_t5, text_emb_mask, text_emb_mask_t5)
condition_emb = self.prepare_extra_emb(text_emb_t5, timestep, size_emb, hidden_states.dtype, hidden_states.shape[0])
# Input
height, width = hidden_states.shape[-2], hidden_states.shape[-1]
hidden_states = self.patch_embedder(hidden_states)
# Blocks
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
if tiled:
hidden_states = rearrange(hidden_states, "B (H W) C -> B C H W", H=height//2)
residuals = []
for block_id, block in enumerate(self.blocks):
residual = residuals.pop() if block_id >= self.num_layers_down else None
hidden_states = self.tiled_block_forward(
block, hidden_states, condition_emb, text_emb, freq_cis_img, residual,
torch_dtype=hidden_states.dtype, data_device=hidden_states.device, computation_device=hidden_states.device,
tile_size=tile_size, tile_stride=tile_stride
)
if block_id < self.num_layers_down - 2:
residuals.append(hidden_states)
hidden_states = rearrange(hidden_states, "B C H W -> B (H W) C")
else:
residuals = []
for block_id, block in enumerate(self.blocks):
residual = residuals.pop() if block_id >= self.num_layers_down else None
if self.training and use_gradient_checkpointing:
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states, condition_emb, text_emb, freq_cis_img, residual,
use_reentrant=False,
)
else:
hidden_states = block(hidden_states, condition_emb, text_emb, freq_cis_img, residual, to_cache=to_cache)
if block_id < self.num_layers_down - 2:
residuals.append(hidden_states)
# Output
hidden_states = self.final_layer(hidden_states, condition_emb)
hidden_states = self.unpatchify(hidden_states, height//2, width//2)
hidden_states, _ = hidden_states.chunk(2, dim=1)
return hidden_states
def state_dict_converter(self):
return HunyuanDiTStateDictConverter()
class HunyuanDiTStateDictConverter():
def __init__(self):
pass
def from_diffusers(self, state_dict):
state_dict_ = {}
for name, param in state_dict.items():
name_ = name
name_ = name_.replace(".default_modulation.", ".modulation.")
name_ = name_.replace(".mlp.fc1.", ".mlp.0.")
name_ = name_.replace(".mlp.fc2.", ".mlp.2.")
name_ = name_.replace(".attn1.q_norm.", ".rota1.q_norm.")
name_ = name_.replace(".attn2.q_norm.", ".rota2.q_norm.")
name_ = name_.replace(".attn1.k_norm.", ".rota1.k_norm.")
name_ = name_.replace(".attn2.k_norm.", ".rota2.k_norm.")
name_ = name_.replace(".q_proj.", ".to_q.")
name_ = name_.replace(".out_proj.", ".to_out.")
name_ = name_.replace("text_embedding_padding", "text_emb_padding")
name_ = name_.replace("mlp_t5.0.", "t5_embedder.0.")
name_ = name_.replace("mlp_t5.2.", "t5_embedder.2.")
name_ = name_.replace("pooler.", "t5_pooler.")
name_ = name_.replace("x_embedder.", "patch_embedder.")
name_ = name_.replace("t_embedder.", "timestep_embedder.")
name_ = name_.replace("t5_pooler.to_q.", "t5_pooler.q_proj.")
name_ = name_.replace("style_embedder.weight", "style_embedder")
if ".kv_proj." in name_:
param_k = param[:param.shape[0]//2]
param_v = param[param.shape[0]//2:]
state_dict_[name_.replace(".kv_proj.", ".to_k.")] = param_k
state_dict_[name_.replace(".kv_proj.", ".to_v.")] = param_v
elif ".Wqkv." in name_:
param_q = param[:param.shape[0]//3]
param_k = param[param.shape[0]//3:param.shape[0]//3*2]
param_v = param[param.shape[0]//3*2:]
state_dict_[name_.replace(".Wqkv.", ".to_q.")] = param_q
state_dict_[name_.replace(".Wqkv.", ".to_k.")] = param_k
state_dict_[name_.replace(".Wqkv.", ".to_v.")] = param_v
elif "style_embedder" in name_:
state_dict_[name_] = param.squeeze()
else:
state_dict_[name_] = param
return state_dict_
def from_civitai(self, state_dict):
return self.from_diffusers(state_dict)