import streamlit as st import pandas as pd from utils.data_loader import load_data from utils.model_loader import evaluate_model, get_test_predictions from visualizations.plot_functions import plot_metrics import matplotlib.pyplot as plt import seaborn as sns from sklearn.metrics import confusion_matrix, roc_curve, auc def load_css(): with open("static/style.css") as f: st.markdown(f"", unsafe_allow_html=True) def load_js(): with open("static/script.js") as f: st.markdown(f"", unsafe_allow_html=True) def main(): st.set_page_config(page_title="ML Dashboard", layout="wide") load_css() load_js() # Sidebar for filters or model selection st.sidebar.title("Options") selected_model = st.sidebar.selectbox("Select Model", ["Logistic Regression", "Decision Tree", "Random Forest", "Gradient Boosting", "SVM"]) # Main sections st.title("ML Dashboard") # Dataset display st.header("Dataset") df = load_data() st.dataframe(df.head()) # Model evaluation metrics st.header("Model Evaluation") metrics = evaluate_model(selected_model) # Tabs for better organization tab1, tab2, tab3 = st.tabs(["Metrics Table", "Bar Plot", "Confusion Matrix"]) # Load results from the notebook @st.cache_data def load_results(): # Simulate loading results from the notebook results = { 'Model': ['Logistic Regression', 'Decision Tree', 'Random Forest', 'Gradient Boosting', 'SVM'], 'Accuracy': [0.85, 0.83, 0.87, 0.88, 0.84], 'Precision': [0.82, 0.80, 0.86, 0.87, 0.81], 'Recall': [0.78, 0.76, 0.84, 0.85, 0.79], 'F1 Score': [0.80, 0.78, 0.85, 0.86, 0.80] } return pd.DataFrame(results) # Display results in the app st.header("Model Results from Notebook") results_df = load_results() st.dataframe(results_df) # Update Metrics Table to match the style of Model Results from Notebook with tab1: st.write("### Metrics Table") st.dataframe(results_df) # Use the same dataframe display style as the notebook results # Update Bar Plot to use notebook results with tab2: st.write("### F1 Score Comparison") fig, ax = plt.subplots() sns.barplot(data=results_df, x='Model', y='F1 Score', ax=ax, palette="viridis") ax.set_title("F1 Score by Model") ax.set_ylabel("F1 Score") ax.set_xlabel("Model") st.pyplot(fig) # Update Confusion Matrix to use notebook results with tab3: st.write("### Confusion Matrix") # Simulate confusion matrix data cm = [[50, 10], [5, 35]] # Example data fig, ax = plt.subplots() sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", ax=ax) ax.set_title("Confusion Matrix") ax.set_xlabel("Predicted") ax.set_ylabel("Actual") st.pyplot(fig) # Optional: ROC Curve if st.sidebar.checkbox("Show ROC Curve"): st.write("### ROC Curve") fpr, tpr, _ = roc_curve(y_test, y_pred) roc_auc = auc(fpr, tpr) fig, ax = plt.subplots() ax.plot(fpr, tpr, color='darkorange', lw=2, label=f'ROC curve (area = {roc_auc:.2f})') ax.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') ax.set_title("Receiver Operating Characteristic") ax.set_xlabel("False Positive Rate") ax.set_ylabel("True Positive Rate") ax.legend(loc="lower right") st.pyplot(fig) if __name__ == "__main__": main()