Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
from utils.data_loader import load_data | |
from utils.model_loader import evaluate_model, get_test_predictions | |
from visualizations.plot_functions import plot_metrics | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
from sklearn.metrics import confusion_matrix, roc_curve, auc | |
def load_css(): | |
with open("static/style.css") as f: | |
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True) | |
def load_js(): | |
with open("static/script.js") as f: | |
st.markdown(f"<script>{f.read()}</script>", unsafe_allow_html=True) | |
def main(): | |
st.set_page_config(page_title="ML Dashboard", layout="wide") | |
load_css() | |
load_js() | |
# Sidebar for filters or model selection | |
st.sidebar.title("Options") | |
selected_model = st.sidebar.selectbox("Select Model", ["Logistic Regression", "Decision Tree", "Random Forest", "Gradient Boosting", "SVM"]) | |
# Main sections | |
st.title("ML Dashboard") | |
# Dataset display | |
st.header("Dataset") | |
df = load_data() | |
st.dataframe(df.head()) | |
# Model evaluation metrics | |
st.header("Model Evaluation") | |
metrics = evaluate_model(selected_model) | |
# Tabs for better organization | |
tab1, tab2, tab3 = st.tabs(["Metrics Table", "Bar Plot", "Confusion Matrix"]) | |
# Load results from the notebook | |
def load_results(): | |
# Simulate loading results from the notebook | |
results = { | |
'Model': ['Logistic Regression', 'Decision Tree', 'Random Forest', 'Gradient Boosting', 'SVM'], | |
'Accuracy': [0.85, 0.83, 0.87, 0.88, 0.84], | |
'Precision': [0.82, 0.80, 0.86, 0.87, 0.81], | |
'Recall': [0.78, 0.76, 0.84, 0.85, 0.79], | |
'F1 Score': [0.80, 0.78, 0.85, 0.86, 0.80] | |
} | |
return pd.DataFrame(results) | |
# Display results in the app | |
st.header("Model Results from Notebook") | |
results_df = load_results() | |
st.dataframe(results_df) | |
# Update Metrics Table to match the style of Model Results from Notebook | |
with tab1: | |
st.write("### Metrics Table") | |
st.dataframe(results_df) # Use the same dataframe display style as the notebook results | |
# Update Bar Plot to use notebook results | |
with tab2: | |
st.write("### F1 Score Comparison") | |
fig, ax = plt.subplots() | |
sns.barplot(data=results_df, x='Model', y='F1 Score', ax=ax, palette="viridis") | |
ax.set_title("F1 Score by Model") | |
ax.set_ylabel("F1 Score") | |
ax.set_xlabel("Model") | |
st.pyplot(fig) | |
# Update Confusion Matrix to use notebook results | |
with tab3: | |
st.write("### Confusion Matrix") | |
# Simulate confusion matrix data | |
cm = [[50, 10], [5, 35]] # Example data | |
fig, ax = plt.subplots() | |
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", ax=ax) | |
ax.set_title("Confusion Matrix") | |
ax.set_xlabel("Predicted") | |
ax.set_ylabel("Actual") | |
st.pyplot(fig) | |
# Optional: ROC Curve | |
if st.sidebar.checkbox("Show ROC Curve"): | |
st.write("### ROC Curve") | |
fpr, tpr, _ = roc_curve(y_test, y_pred) | |
roc_auc = auc(fpr, tpr) | |
fig, ax = plt.subplots() | |
ax.plot(fpr, tpr, color='darkorange', lw=2, label=f'ROC curve (area = {roc_auc:.2f})') | |
ax.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') | |
ax.set_title("Receiver Operating Characteristic") | |
ax.set_xlabel("False Positive Rate") | |
ax.set_ylabel("True Positive Rate") | |
ax.legend(loc="lower right") | |
st.pyplot(fig) | |
if __name__ == "__main__": | |
main() |