Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import DetrImageProcessor, DetrForObjectDetection, TrOCRProcessor, VisionEncoderDecoderModel
|
2 |
+
import cv2
|
3 |
+
from PIL import Image, ImageDraw
|
4 |
+
import torch
|
5 |
+
import streamlit as st
|
6 |
+
|
7 |
+
# Load Hugging Face Models
|
8 |
+
detr_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
9 |
+
detr_model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
|
10 |
+
trocr_processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-stage1")
|
11 |
+
trocr_model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-stage1")
|
12 |
+
|
13 |
+
# Detect license plates
|
14 |
+
def detect_license_plate(frame):
|
15 |
+
pil_image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
16 |
+
inputs = detr_processor(images=pil_image, return_tensors="pt")
|
17 |
+
outputs = detr_model(**inputs)
|
18 |
+
|
19 |
+
target_sizes = torch.tensor([pil_image.size[::-1]])
|
20 |
+
results = detr_processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)
|
21 |
+
|
22 |
+
return results[0]["boxes"], pil_image
|
23 |
+
|
24 |
+
# Recognize text
|
25 |
+
def recognize_text_from_plate(cropped_plate):
|
26 |
+
inputs = trocr_processor(images=cropped_plate, return_tensors="pt")
|
27 |
+
outputs = trocr_model.generate(**inputs)
|
28 |
+
return trocr_processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
# Streamlit configuration
|
34 |
+
st.title("Real-Time Car Number Plate Recognition")
|
35 |
+
st.text("This application uses Hugging Face Transformers to detect and recognize car plates.")
|
36 |
+
|
37 |
+
# Authorized car database
|
38 |
+
authorized_cars = {"KA01AB1234", "MH12XY5678", "DL8CAF9090"}
|
39 |
+
|
40 |
+
# Verification function
|
41 |
+
def verify_plate(plate_text):
|
42 |
+
if plate_text in authorized_cars:
|
43 |
+
return f"✅ Access Granted: {plate_text}"
|
44 |
+
else:
|
45 |
+
return f"❌ Access Denied: {plate_text}"
|
46 |
+
|
47 |
+
|
48 |
+
# Live video feed and processing
|
49 |
+
def live_feed():
|
50 |
+
cap = cv2.VideoCapture(0) # Open the webcam
|
51 |
+
stframe = st.empty() # Streamlit frame for displaying video
|
52 |
+
|
53 |
+
while cap.isOpened():
|
54 |
+
ret, frame = cap.read()
|
55 |
+
if not ret:
|
56 |
+
break
|
57 |
+
|
58 |
+
# Detect license plates
|
59 |
+
boxes, pil_image = detect_license_plate(frame)
|
60 |
+
draw = ImageDraw.Draw(pil_image)
|
61 |
+
|
62 |
+
recognized_plates = []
|
63 |
+
for box in boxes:
|
64 |
+
# Crop the detected plate
|
65 |
+
cropped_plate = pil_image.crop((box[0], box[1], box[2], box[3]))
|
66 |
+
|
67 |
+
# Recognize text
|
68 |
+
plate_text = recognize_text_from_plate(cropped_plate)
|
69 |
+
recognized_plates.append(plate_text)
|
70 |
+
|
71 |
+
# Draw bounding box and text
|
72 |
+
draw.rectangle(box.tolist(), outline="red", width=2)
|
73 |
+
draw.text((box[0], box[1]), plate_text, fill="red")
|
74 |
+
|
75 |
+
# Convert PIL image back to OpenCV format
|
76 |
+
processed_frame = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
|
77 |
+
|
78 |
+
# Stream the video to Streamlit
|
79 |
+
stframe.image(processed_frame, channels="BGR")
|
80 |
+
|
81 |
+
# Show results
|
82 |
+
for plate_text in recognized_plates:
|
83 |
+
st.write(verify_plate(plate_text))
|
84 |
+
|
85 |
+
cap.release()
|
86 |
+
cv2.destroyAllWindows()
|
87 |
+
|
88 |
+
if st.button("Start Camera"):
|
89 |
+
live_feed()
|
90 |
+
|