Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -18,7 +18,6 @@ st.write("This app uses Hugging Face Transformers, OpenCV, and Streamlit for det
|
|
18 |
# Authorized Car Database
|
19 |
authorized_cars = {"KA01AB1234", "MH12XY5678", "DL8CAF9090"} # Dummy data for verification
|
20 |
|
21 |
-
|
22 |
# Detect License Plates
|
23 |
def detect_license_plate(frame):
|
24 |
pil_image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
@@ -30,14 +29,12 @@ def detect_license_plate(frame):
|
|
30 |
results = detr_processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)
|
31 |
return results[0]["boxes"], pil_image
|
32 |
|
33 |
-
|
34 |
# Recognize Text from Plates
|
35 |
def recognize_text_from_plate(cropped_plate):
|
36 |
inputs = trocr_processor(images=cropped_plate, return_tensors="pt")
|
37 |
outputs = trocr_model.generate(**inputs)
|
38 |
return trocr_processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
39 |
|
40 |
-
|
41 |
# Verify Plate Text
|
42 |
def verify_plate(plate_text):
|
43 |
if plate_text in authorized_cars:
|
@@ -45,15 +42,19 @@ def verify_plate(plate_text):
|
|
45 |
else:
|
46 |
return f"❌ Access Denied: {plate_text}"
|
47 |
|
48 |
-
|
49 |
# Real-Time Video Processing with OpenCV
|
50 |
def live_feed():
|
51 |
cap = cv2.VideoCapture(0) # Open webcam
|
52 |
-
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
while
|
55 |
ret, frame = cap.read()
|
56 |
if not ret:
|
|
|
57 |
break
|
58 |
|
59 |
# Detect plates
|
@@ -84,7 +85,6 @@ def live_feed():
|
|
84 |
cap.release()
|
85 |
cv2.destroyAllWindows()
|
86 |
|
87 |
-
|
88 |
# Streamlit UI
|
89 |
if st.button("Start Camera"):
|
90 |
live_feed()
|
|
|
18 |
# Authorized Car Database
|
19 |
authorized_cars = {"KA01AB1234", "MH12XY5678", "DL8CAF9090"} # Dummy data for verification
|
20 |
|
|
|
21 |
# Detect License Plates
|
22 |
def detect_license_plate(frame):
|
23 |
pil_image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
|
|
29 |
results = detr_processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)
|
30 |
return results[0]["boxes"], pil_image
|
31 |
|
|
|
32 |
# Recognize Text from Plates
|
33 |
def recognize_text_from_plate(cropped_plate):
|
34 |
inputs = trocr_processor(images=cropped_plate, return_tensors="pt")
|
35 |
outputs = trocr_model.generate(**inputs)
|
36 |
return trocr_processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
37 |
|
|
|
38 |
# Verify Plate Text
|
39 |
def verify_plate(plate_text):
|
40 |
if plate_text in authorized_cars:
|
|
|
42 |
else:
|
43 |
return f"❌ Access Denied: {plate_text}"
|
44 |
|
|
|
45 |
# Real-Time Video Processing with OpenCV
|
46 |
def live_feed():
|
47 |
cap = cv2.VideoCapture(0) # Open webcam
|
48 |
+
if not cap.isOpened():
|
49 |
+
st.error("Unable to access the camera.")
|
50 |
+
return
|
51 |
+
|
52 |
+
stframe = st.image([]) # Placeholder for video feed
|
53 |
|
54 |
+
while True:
|
55 |
ret, frame = cap.read()
|
56 |
if not ret:
|
57 |
+
st.error("Failed to capture frame from the camera. Exiting...")
|
58 |
break
|
59 |
|
60 |
# Detect plates
|
|
|
85 |
cap.release()
|
86 |
cv2.destroyAllWindows()
|
87 |
|
|
|
88 |
# Streamlit UI
|
89 |
if st.button("Start Camera"):
|
90 |
live_feed()
|