vikramjeetthakur commited on
Commit
093562b
·
verified ·
1 Parent(s): d458f63

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -44
app.py CHANGED
@@ -1,9 +1,10 @@
1
  import streamlit as st
2
- import cv2
3
- import numpy as np
4
- from PIL import Image, ImageDraw
5
  from transformers import DetrImageProcessor, DetrForObjectDetection, TrOCRProcessor, VisionEncoderDecoderModel
 
6
  import torch
 
7
 
8
  # Load Models
9
  detr_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
@@ -11,20 +12,14 @@ detr_model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
11
  trocr_processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-stage1")
12
  trocr_model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-stage1")
13
 
14
- # Streamlit App Configuration
15
- st.title("Real-Time Car Number Plate Recognition")
16
- st.write("This app uses Hugging Face Transformers, OpenCV, and Streamlit for detecting and recognizing car number plates in real-time.")
17
-
18
- # Authorized Car Database
19
- authorized_cars = {"KA01AB1234", "MH12XY5678", "DL8CAF9090"} # Dummy data for verification
20
 
21
  # Detect License Plates
22
  def detect_license_plate(frame):
23
- pil_image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
24
  inputs = detr_processor(images=pil_image, return_tensors="pt")
25
  outputs = detr_model(**inputs)
26
-
27
- # Post-process outputs to get bounding boxes
28
  target_sizes = torch.tensor([pil_image.size[::-1]])
29
  results = detr_processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)
30
  return results[0]["boxes"], pil_image
@@ -35,56 +30,35 @@ def recognize_text_from_plate(cropped_plate):
35
  outputs = trocr_model.generate(**inputs)
36
  return trocr_processor.batch_decode(outputs, skip_special_tokens=True)[0]
37
 
38
- # Verify Plate Text
39
  def verify_plate(plate_text):
40
  if plate_text in authorized_cars:
41
  return f"✅ Access Granted: {plate_text}"
42
  else:
43
  return f"❌ Access Denied: {plate_text}"
44
 
45
- # Real-Time Video Processing with OpenCV
46
- def live_feed():
47
- cap = cv2.VideoCapture(0) # Open webcam
48
- if not cap.isOpened():
49
- st.error("Unable to access the camera.")
50
- return
51
-
52
- stframe = st.image([]) # Placeholder for video feed
53
-
54
- while True:
55
- ret, frame = cap.read()
56
- if not ret:
57
- st.error("Failed to capture frame from the camera. Exiting...")
58
- break
59
-
60
- # Detect plates
61
  boxes, pil_image = detect_license_plate(frame)
62
  draw = ImageDraw.Draw(pil_image)
63
 
64
  recognized_plates = []
65
  for box in boxes:
66
- # Crop and recognize plate
67
  cropped_plate = pil_image.crop((box[0], box[1], box[2], box[3]))
68
  plate_text = recognize_text_from_plate(cropped_plate)
69
  recognized_plates.append(plate_text)
70
-
71
- # Draw box and label
72
  draw.rectangle(box.tolist(), outline="red", width=3)
73
  draw.text((box[0], box[1]), plate_text, fill="red")
74
 
75
- # Convert back to OpenCV format
76
- processed_frame = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
77
-
78
- # Stream video to Streamlit
79
- stframe.image(processed_frame, channels="BGR", use_column_width=True)
80
-
81
- # Display results
82
  for plate_text in recognized_plates:
83
  st.write(verify_plate(plate_text))
84
-
85
- cap.release()
86
- cv2.destroyAllWindows()
87
 
88
  # Streamlit UI
89
- if st.button("Start Camera"):
90
- live_feed()
 
 
1
  import streamlit as st
2
+ from streamlit_webrtc import webrtc_streamer, VideoProcessorBase
3
+ import av
 
4
  from transformers import DetrImageProcessor, DetrForObjectDetection, TrOCRProcessor, VisionEncoderDecoderModel
5
+ from PIL import Image, ImageDraw
6
  import torch
7
+ import numpy as np
8
 
9
  # Load Models
10
  detr_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
 
12
  trocr_processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-stage1")
13
  trocr_model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-stage1")
14
 
15
+ # Authorized car database
16
+ authorized_cars = {"KA01AB1234", "MH12XY5678", "DL8CAF9090"}
 
 
 
 
17
 
18
  # Detect License Plates
19
  def detect_license_plate(frame):
20
+ pil_image = Image.fromarray(frame)
21
  inputs = detr_processor(images=pil_image, return_tensors="pt")
22
  outputs = detr_model(**inputs)
 
 
23
  target_sizes = torch.tensor([pil_image.size[::-1]])
24
  results = detr_processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)
25
  return results[0]["boxes"], pil_image
 
30
  outputs = trocr_model.generate(**inputs)
31
  return trocr_processor.batch_decode(outputs, skip_special_tokens=True)[0]
32
 
33
+ # Verify Plate
34
  def verify_plate(plate_text):
35
  if plate_text in authorized_cars:
36
  return f"✅ Access Granted: {plate_text}"
37
  else:
38
  return f"❌ Access Denied: {plate_text}"
39
 
40
+ # Custom Video Processor
41
+ class LicensePlateProcessor(VideoProcessorBase):
42
+ def recv(self, frame: av.VideoFrame):
43
+ frame = frame.to_ndarray(format="bgr24")
 
 
 
 
 
 
 
 
 
 
 
 
44
  boxes, pil_image = detect_license_plate(frame)
45
  draw = ImageDraw.Draw(pil_image)
46
 
47
  recognized_plates = []
48
  for box in boxes:
 
49
  cropped_plate = pil_image.crop((box[0], box[1], box[2], box[3]))
50
  plate_text = recognize_text_from_plate(cropped_plate)
51
  recognized_plates.append(plate_text)
 
 
52
  draw.rectangle(box.tolist(), outline="red", width=3)
53
  draw.text((box[0], box[1]), plate_text, fill="red")
54
 
55
+ # Return processed frame
56
+ processed_frame = np.array(pil_image)
 
 
 
 
 
57
  for plate_text in recognized_plates:
58
  st.write(verify_plate(plate_text))
59
+ return av.VideoFrame.from_ndarray(processed_frame, format="bgr24")
 
 
60
 
61
  # Streamlit UI
62
+ st.title("Real-Time Car Number Plate Recognition")
63
+ st.write("Streamlit with WebRTC for camera streaming.")
64
+ webrtc_streamer(key="plate-recognition", video_processor_factory=LicensePlateProcessor)