vikigitonga11 commited on
Commit
7a0884e
·
verified ·
1 Parent(s): 364ff78

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -11
app.py CHANGED
@@ -1,37 +1,38 @@
1
  import gradio as gr
2
- from transformers import T5Tokenizer, T5ForConditionalGeneration, pipeline
3
 
4
  # Load T5-small model and tokenizer
5
  model_name = "t5-small"
6
  tokenizer = T5Tokenizer.from_pretrained(model_name)
7
  model = T5ForConditionalGeneration.from_pretrained(model_name)
8
 
9
- def generate_paraphrase(text, max_length, temperature):
10
- """Generate a paraphrased version of the input text using T5-small."""
11
  if not text.strip():
12
- return "⚠️ Please enter some text to paraphrase."
13
-
14
  input_text = f"paraphrase: {text} </s>"
15
  input_ids = tokenizer.encode(input_text, return_tensors="pt")
16
 
17
- output = model.generate(
18
  input_ids,
19
  max_length=max_length,
20
  top_k=50,
21
  top_p=0.95,
22
- num_return_sequences=1,
23
  do_sample=True
24
  )
25
 
26
- paraphrased_text = tokenizer.decode(output[0], skip_special_tokens=True)
27
- return paraphrased_text
28
 
29
  # Define Gradio Interface
30
  description = """
31
  ## ✨ AI Paraphrasing Tool
32
- Enter a sentence and let AI generate a paraphrased version!
33
  - Adjust **max length** for longer outputs.
34
  - Tune **temperature** for more creative results.
 
35
  """
36
 
37
  demo = gr.Interface(
@@ -40,8 +41,9 @@ demo = gr.Interface(
40
  gr.Textbox(label="Enter text", placeholder="Type a sentence to paraphrase..."),
41
  gr.Slider(20, 100, value=50, step=5, label="Max Output Length"),
42
  gr.Slider(0.5, 1.5, value=1.0, step=0.1, label="Creativity (Temperature)"),
 
43
  ],
44
- outputs=gr.Textbox(label="Paraphrased Text"),
45
  title="📝 AI Paraphraser",
46
  description=description,
47
  theme="huggingface",
 
1
  import gradio as gr
2
+ from transformers import T5Tokenizer, T5ForConditionalGeneration
3
 
4
  # Load T5-small model and tokenizer
5
  model_name = "t5-small"
6
  tokenizer = T5Tokenizer.from_pretrained(model_name)
7
  model = T5ForConditionalGeneration.from_pretrained(model_name)
8
 
9
+ def generate_paraphrase(text, max_length, temperature, num_outputs):
10
+ """Generate paraphrased versions of the input text using T5-small."""
11
  if not text.strip():
12
+ return ["⚠️ Please enter some text to paraphrase."]
13
+
14
  input_text = f"paraphrase: {text} </s>"
15
  input_ids = tokenizer.encode(input_text, return_tensors="pt")
16
 
17
+ outputs = model.generate(
18
  input_ids,
19
  max_length=max_length,
20
  top_k=50,
21
  top_p=0.95,
22
+ num_return_sequences=num_outputs,
23
  do_sample=True
24
  )
25
 
26
+ paraphrased_texts = [tokenizer.decode(output, skip_special_tokens=True) for output in outputs]
27
+ return paraphrased_texts # Returns a list of paraphrases
28
 
29
  # Define Gradio Interface
30
  description = """
31
  ## ✨ AI Paraphrasing Tool
32
+ Enter a sentence and let AI generate multiple paraphrased versions!
33
  - Adjust **max length** for longer outputs.
34
  - Tune **temperature** for more creative results.
35
+ - Choose **number of outputs** to generate multiple variations.
36
  """
37
 
38
  demo = gr.Interface(
 
41
  gr.Textbox(label="Enter text", placeholder="Type a sentence to paraphrase..."),
42
  gr.Slider(20, 100, value=50, step=5, label="Max Output Length"),
43
  gr.Slider(0.5, 1.5, value=1.0, step=0.1, label="Creativity (Temperature)"),
44
+ gr.Dropdown(choices=[1, 2, 3, 4, 5], value=1, label="Number of Outputs")
45
  ],
46
+ outputs=gr.Textbox(label="Paraphrased Text", lines=5), # Allows multiple outputs
47
  title="📝 AI Paraphraser",
48
  description=description,
49
  theme="huggingface",