Update app.py
Browse files
app.py
CHANGED
@@ -3,24 +3,26 @@ import re
|
|
3 |
import torch
|
4 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
5 |
|
6 |
-
# Load T5
|
7 |
-
model_name = "t5-
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, torch_dtype=torch.float16) # Use
|
10 |
|
11 |
-
# Move model to CPU (
|
12 |
-
|
|
|
13 |
|
14 |
-
# Initialize paraphrase pipeline
|
15 |
paraphrase_pipeline = pipeline(
|
16 |
"text2text-generation",
|
17 |
model=model,
|
18 |
tokenizer=tokenizer,
|
19 |
-
truncation=True
|
|
|
20 |
)
|
21 |
|
22 |
def split_sentences(text):
|
23 |
-
"""Split text into sentences using regex
|
24 |
return re.split(r'(?<=[.!?])\s+', text.strip())
|
25 |
|
26 |
def paraphrase_text(text):
|
@@ -30,10 +32,10 @@ def paraphrase_text(text):
|
|
30 |
|
31 |
sentences = split_sentences(text)
|
32 |
|
33 |
-
# Apply T5 paraphrasing to each sentence
|
34 |
paraphrased_results = paraphrase_pipeline(
|
35 |
-
[f"
|
36 |
-
max_length=50, do_sample=True, batch_size=8, num_return_sequences=1
|
37 |
)
|
38 |
|
39 |
paraphrased_sentences = [result['generated_text'] for result in paraphrased_results]
|
@@ -44,8 +46,8 @@ demo = gr.Interface(
|
|
44 |
fn=paraphrase_text,
|
45 |
inputs=gr.Textbox(label="Enter text", placeholder="Type your text to paraphrase...", lines=10),
|
46 |
outputs=gr.Textbox(label="Paraphrased Text", lines=10),
|
47 |
-
title="🚀
|
48 |
-
description="Enter text and let AI generate a paraphrased version using
|
49 |
theme="huggingface"
|
50 |
)
|
51 |
|
|
|
3 |
import torch
|
4 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
5 |
|
6 |
+
# Load FLAN-T5 Large model
|
7 |
+
model_name = "google/flan-t5-large"
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, torch_dtype=torch.float16) # Use float16 for efficiency
|
10 |
|
11 |
+
# Move model to CPU (Change to "cuda" if using GPU)
|
12 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
+
model.to(device)
|
14 |
|
15 |
+
# Initialize paraphrase pipeline
|
16 |
paraphrase_pipeline = pipeline(
|
17 |
"text2text-generation",
|
18 |
model=model,
|
19 |
tokenizer=tokenizer,
|
20 |
+
truncation=True,
|
21 |
+
device=0 if device == "cuda" else -1 # Use GPU if available
|
22 |
)
|
23 |
|
24 |
def split_sentences(text):
|
25 |
+
"""Split text into sentences using regex."""
|
26 |
return re.split(r'(?<=[.!?])\s+', text.strip())
|
27 |
|
28 |
def paraphrase_text(text):
|
|
|
32 |
|
33 |
sentences = split_sentences(text)
|
34 |
|
35 |
+
# Apply FLAN-T5 paraphrasing to each sentence
|
36 |
paraphrased_results = paraphrase_pipeline(
|
37 |
+
[f"Rephrase this sentence: {sentence}" for sentence in sentences if sentence],
|
38 |
+
max_length=50, do_sample=True, batch_size=8, num_return_sequences=1
|
39 |
)
|
40 |
|
41 |
paraphrased_sentences = [result['generated_text'] for result in paraphrased_results]
|
|
|
46 |
fn=paraphrase_text,
|
47 |
inputs=gr.Textbox(label="Enter text", placeholder="Type your text to paraphrase...", lines=10),
|
48 |
outputs=gr.Textbox(label="Paraphrased Text", lines=10),
|
49 |
+
title="🚀 FLAN-T5 Paraphraser",
|
50 |
+
description="Enter text and let AI generate a paraphrased version using FLAN-T5-Large!",
|
51 |
theme="huggingface"
|
52 |
)
|
53 |
|