File size: 17,232 Bytes
160d3b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
""" Twins
A PyTorch impl of : `Twins: Revisiting the Design of Spatial Attention in Vision Transformers`
    - https://arxiv.org/pdf/2104.13840.pdf

Code/weights from https://github.com/Meituan-AutoML/Twins, original copyright/license info below

"""
# --------------------------------------------------------
# Twins
# Copyright (c) 2021 Meituan
# Licensed under The Apache 2.0 License [see LICENSE for details]
# Written by Xinjie Li, Xiangxiang Chu
# --------------------------------------------------------
import math
from copy import deepcopy
from typing import Optional, Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial

from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .layers import Mlp, DropPath, to_2tuple, trunc_normal_
from .registry import register_model
from .vision_transformer import Attention
from .helpers import build_model_with_cfg, overlay_external_default_cfg


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
        'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
        'first_conv': 'patch_embeds.0.proj', 'classifier': 'head',
        **kwargs
    }


default_cfgs = {
    'twins_pcpvt_small': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/twins_pcpvt_small-e70e7e7a.pth',
        ),
    'twins_pcpvt_base': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/twins_pcpvt_base-e5ecb09b.pth',
        ),
    'twins_pcpvt_large': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/twins_pcpvt_large-d273f802.pth',
        ),
    'twins_svt_small': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/twins_svt_small-42e5f78c.pth',
        ),
    'twins_svt_base': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/twins_svt_base-c2265010.pth',
        ),
    'twins_svt_large': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vt3p-weights/twins_svt_large-90f6aaa9.pth',
        ),
}

Size_ = Tuple[int, int]


class LocallyGroupedAttn(nn.Module):
    """ LSA: self attention within a group
    """
    def __init__(self, dim, num_heads=8, attn_drop=0., proj_drop=0., ws=1):
        assert ws != 1
        super(LocallyGroupedAttn, self).__init__()
        assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."

        self.dim = dim
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=True)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)
        self.ws = ws

    def forward(self, x, size: Size_):
        # There are two implementations for this function, zero padding or mask. We don't observe obvious difference for
        # both. You can choose any one, we recommend forward_padding because it's neat. However,
        # the masking implementation is more reasonable and accurate.
        B, N, C = x.shape
        H, W = size
        x = x.view(B, H, W, C)
        pad_l = pad_t = 0
        pad_r = (self.ws - W % self.ws) % self.ws
        pad_b = (self.ws - H % self.ws) % self.ws
        x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
        _, Hp, Wp, _ = x.shape
        _h, _w = Hp // self.ws, Wp // self.ws
        x = x.reshape(B, _h, self.ws, _w, self.ws, C).transpose(2, 3)
        qkv = self.qkv(x).reshape(
            B, _h * _w, self.ws * self.ws, 3, self.num_heads, C // self.num_heads).permute(3, 0, 1, 4, 2, 5)
        q, k, v = qkv[0], qkv[1], qkv[2]
        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)
        attn = (attn @ v).transpose(2, 3).reshape(B, _h, _w, self.ws, self.ws, C)
        x = attn.transpose(2, 3).reshape(B, _h * self.ws, _w * self.ws, C)
        if pad_r > 0 or pad_b > 0:
            x = x[:, :H, :W, :].contiguous()
        x = x.reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

    # def forward_mask(self, x, size: Size_):
    #     B, N, C = x.shape
    #     H, W = size
    #     x = x.view(B, H, W, C)
    #     pad_l = pad_t = 0
    #     pad_r = (self.ws - W % self.ws) % self.ws
    #     pad_b = (self.ws - H % self.ws) % self.ws
    #     x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
    #     _, Hp, Wp, _ = x.shape
    #     _h, _w = Hp // self.ws, Wp // self.ws
    #     mask = torch.zeros((1, Hp, Wp), device=x.device)
    #     mask[:, -pad_b:, :].fill_(1)
    #     mask[:, :, -pad_r:].fill_(1)
    #
    #     x = x.reshape(B, _h, self.ws, _w, self.ws, C).transpose(2, 3)  # B, _h, _w, ws, ws, C
    #     mask = mask.reshape(1, _h, self.ws, _w, self.ws).transpose(2, 3).reshape(1,  _h * _w, self.ws * self.ws)
    #     attn_mask = mask.unsqueeze(2) - mask.unsqueeze(3)  # 1, _h*_w, ws*ws, ws*ws
    #     attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-1000.0)).masked_fill(attn_mask == 0, float(0.0))
    #     qkv = self.qkv(x).reshape(
    #         B, _h * _w, self.ws * self.ws, 3, self.num_heads, C // self.num_heads).permute(3, 0, 1, 4, 2, 5)
    #     # n_h, B, _w*_h, nhead, ws*ws, dim
    #     q, k, v = qkv[0], qkv[1], qkv[2]  # B, _h*_w, n_head, ws*ws, dim_head
    #     attn = (q @ k.transpose(-2, -1)) * self.scale  # B, _h*_w, n_head, ws*ws, ws*ws
    #     attn = attn + attn_mask.unsqueeze(2)
    #     attn = attn.softmax(dim=-1)
    #     attn = self.attn_drop(attn)  # attn @v ->  B, _h*_w, n_head, ws*ws, dim_head
    #     attn = (attn @ v).transpose(2, 3).reshape(B, _h, _w, self.ws, self.ws, C)
    #     x = attn.transpose(2, 3).reshape(B, _h * self.ws, _w * self.ws, C)
    #     if pad_r > 0 or pad_b > 0:
    #         x = x[:, :H, :W, :].contiguous()
    #     x = x.reshape(B, N, C)
    #     x = self.proj(x)
    #     x = self.proj_drop(x)
    #     return x


class GlobalSubSampleAttn(nn.Module):
    """ GSA: using a  key to summarize the information for a group to be efficient.
    """
    def __init__(self, dim, num_heads=8, attn_drop=0., proj_drop=0., sr_ratio=1):
        super().__init__()
        assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."

        self.dim = dim
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5

        self.q = nn.Linear(dim, dim, bias=True)
        self.kv = nn.Linear(dim, dim * 2, bias=True)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        self.sr_ratio = sr_ratio
        if sr_ratio > 1:
            self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
            self.norm = nn.LayerNorm(dim)
        else:
            self.sr = None
            self.norm = None

    def forward(self, x, size: Size_):
        B, N, C = x.shape
        q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)

        if self.sr is not None:
            x = x.permute(0, 2, 1).reshape(B, C, *size)
            x = self.sr(x).reshape(B, C, -1).permute(0, 2, 1)
            x = self.norm(x)
        kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        k, v = kv[0], kv[1]

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)

        return x


class Block(nn.Module):

    def __init__(self, dim, num_heads, mlp_ratio=4., drop=0., attn_drop=0., drop_path=0.,
                 act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1, ws=None):
        super().__init__()
        self.norm1 = norm_layer(dim)
        if ws is None:
            self.attn = Attention(dim, num_heads, False, None, attn_drop, drop)
        elif ws == 1:
            self.attn = GlobalSubSampleAttn(dim, num_heads, attn_drop, drop, sr_ratio)
        else:
            self.attn = LocallyGroupedAttn(dim, num_heads, attn_drop, drop, ws)
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def forward(self, x, size: Size_):
        x = x + self.drop_path(self.attn(self.norm1(x), size))
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x


class PosConv(nn.Module):
    # PEG  from https://arxiv.org/abs/2102.10882
    def __init__(self, in_chans, embed_dim=768, stride=1):
        super(PosConv, self).__init__()
        self.proj = nn.Sequential(nn.Conv2d(in_chans, embed_dim, 3, stride, 1, bias=True, groups=embed_dim), )
        self.stride = stride

    def forward(self, x, size: Size_):
        B, N, C = x.shape
        cnn_feat_token = x.transpose(1, 2).view(B, C, *size)
        x = self.proj(cnn_feat_token)
        if self.stride == 1:
            x += cnn_feat_token
        x = x.flatten(2).transpose(1, 2)
        return x

    def no_weight_decay(self):
        return ['proj.%d.weight' % i for i in range(4)]


class PatchEmbed(nn.Module):
    """ Image to Patch Embedding
    """

    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)

        self.img_size = img_size
        self.patch_size = patch_size
        assert img_size[0] % patch_size[0] == 0 and img_size[1] % patch_size[1] == 0, \
            f"img_size {img_size} should be divided by patch_size {patch_size}."
        self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
        self.num_patches = self.H * self.W
        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
        self.norm = nn.LayerNorm(embed_dim)

    def forward(self, x) -> Tuple[torch.Tensor, Size_]:
        B, C, H, W = x.shape

        x = self.proj(x).flatten(2).transpose(1, 2)
        x = self.norm(x)
        out_size = (H // self.patch_size[0], W // self.patch_size[1])

        return x, out_size


class Twins(nn.Module):
    """ Twins Vision Transfomer (Revisiting Spatial Attention)

    Adapted from PVT (PyramidVisionTransformer) class at https://github.com/whai362/PVT.git
    """
    def __init__(
            self, img_size=224, patch_size=4, in_chans=3, num_classes=1000, embed_dims=(64, 128, 256, 512),
            num_heads=(1, 2, 4, 8), mlp_ratios=(4, 4, 4, 4), drop_rate=0., attn_drop_rate=0., drop_path_rate=0.,
            norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=(3, 4, 6, 3), sr_ratios=(8, 4, 2, 1), wss=None,
            block_cls=Block):
        super().__init__()
        self.num_classes = num_classes
        self.depths = depths
        self.embed_dims = embed_dims
        self.num_features = embed_dims[-1]

        img_size = to_2tuple(img_size)
        prev_chs = in_chans
        self.patch_embeds = nn.ModuleList()
        self.pos_drops = nn.ModuleList()
        for i in range(len(depths)):
            self.patch_embeds.append(PatchEmbed(img_size, patch_size, prev_chs, embed_dims[i]))
            self.pos_drops.append(nn.Dropout(p=drop_rate))
            prev_chs = embed_dims[i]
            img_size = tuple(t // patch_size for t in img_size)
            patch_size = 2

        self.blocks = nn.ModuleList()
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule
        cur = 0
        for k in range(len(depths)):
            _block = nn.ModuleList([block_cls(
                dim=embed_dims[k], num_heads=num_heads[k], mlp_ratio=mlp_ratios[k], drop=drop_rate,
                attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, sr_ratio=sr_ratios[k],
                ws=1 if wss is None or i % 2 == 1 else wss[k]) for i in range(depths[k])])
            self.blocks.append(_block)
            cur += depths[k]

        self.pos_block = nn.ModuleList([PosConv(embed_dim, embed_dim) for embed_dim in embed_dims])

        self.norm = norm_layer(self.num_features)

        # classification head
        self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()

        # init weights
        self.apply(self._init_weights)

    @torch.jit.ignore
    def no_weight_decay(self):
        return set(['pos_block.' + n for n, p in self.pos_block.named_parameters()])

    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes, global_pool=''):
        self.num_classes = num_classes
        self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()
        elif isinstance(m, nn.BatchNorm2d):
            m.weight.data.fill_(1.0)
            m.bias.data.zero_()

    def forward_features(self, x):
        B = x.shape[0]
        for i, (embed, drop, blocks, pos_blk) in enumerate(
                zip(self.patch_embeds, self.pos_drops, self.blocks, self.pos_block)):
            x, size = embed(x)
            x = drop(x)
            for j, blk in enumerate(blocks):
                x = blk(x, size)
                if j == 0:
                    x = pos_blk(x, size)  # PEG here
            if i < len(self.depths) - 1:
                x = x.reshape(B, *size, -1).permute(0, 3, 1, 2).contiguous()
        x = self.norm(x)
        return x.mean(dim=1)  # GAP here

    def forward(self, x):
        x = self.forward_features(x)
        x = self.head(x)
        return x


def _create_twins(variant, pretrained=False, **kwargs):
    if kwargs.get('features_only', None):
        raise RuntimeError('features_only not implemented for Vision Transformer models.')

    model = build_model_with_cfg(
        Twins, variant, pretrained,
        default_cfg=default_cfgs[variant],
        **kwargs)
    return model


@register_model
def twins_pcpvt_small(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
        depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], **kwargs)
    return _create_twins('twins_pcpvt_small', pretrained=pretrained, **model_kwargs)


@register_model
def twins_pcpvt_base(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
        depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1], **kwargs)
    return _create_twins('twins_pcpvt_base', pretrained=pretrained, **model_kwargs)


@register_model
def twins_pcpvt_large(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
        depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1], **kwargs)
    return _create_twins('twins_pcpvt_large', pretrained=pretrained, **model_kwargs)


@register_model
def twins_svt_small(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=4, embed_dims=[64, 128, 256, 512], num_heads=[2, 4, 8, 16], mlp_ratios=[4, 4, 4, 4],
        depths=[2, 2, 10, 4], wss=[7, 7, 7, 7], sr_ratios=[8, 4, 2, 1], **kwargs)
    return _create_twins('twins_svt_small', pretrained=pretrained, **model_kwargs)


@register_model
def twins_svt_base(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=4, embed_dims=[96, 192, 384, 768], num_heads=[3, 6, 12, 24], mlp_ratios=[4, 4, 4, 4],
        depths=[2, 2, 18, 2], wss=[7, 7, 7, 7], sr_ratios=[8, 4, 2, 1], **kwargs)
    return _create_twins('twins_svt_base', pretrained=pretrained, **model_kwargs)


@register_model
def twins_svt_large(pretrained=False, **kwargs):
    model_kwargs = dict(
        patch_size=4, embed_dims=[128, 256, 512, 1024], num_heads=[4, 8, 16, 32], mlp_ratios=[4, 4, 4, 4],
        depths=[2, 2, 18, 2], wss=[7, 7, 7, 7], sr_ratios=[8, 4, 2, 1], **kwargs)
    return _create_twins('twins_svt_large', pretrained=pretrained, **model_kwargs)