Spaces:
Sleeping
Sleeping
File size: 8,263 Bytes
ce072fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import streamlit as st
import wave
# from ASR import recognize
import requests
import pyaudio
import numpy as np
import base64
import io
import os
import time
import tempfile
import librosa
import traceback
from pydub import AudioSegment
from utils.vad import get_speech_timestamps, collect_chunks, VadOptions
API_URL = os.getenv("API_URL", "http://127.0.0.1:60808/chat")
# recording parameters
IN_FORMAT = pyaudio.paInt16
IN_CHANNELS = 1
IN_RATE = 24000
IN_CHUNK = 1024
IN_SAMPLE_WIDTH = 2
VAD_STRIDE = 0.5
# playing parameters
OUT_FORMAT = pyaudio.paInt16
OUT_CHANNELS = 1
OUT_RATE = 24000
OUT_SAMPLE_WIDTH = 2
OUT_CHUNK = 5760
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
def run_vad(ori_audio, sr):
_st = time.time()
try:
audio = np.frombuffer(ori_audio, dtype=np.int16)
audio = audio.astype(np.float32) / 32768.0
sampling_rate = 16000
if sr != sampling_rate:
audio = librosa.resample(audio, orig_sr=sr, target_sr=sampling_rate)
vad_parameters = {}
vad_parameters = VadOptions(**vad_parameters)
speech_chunks = get_speech_timestamps(audio, vad_parameters)
audio = collect_chunks(audio, speech_chunks)
duration_after_vad = audio.shape[0] / sampling_rate
if sr != sampling_rate:
# resample to original sampling rate
vad_audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=sr)
else:
vad_audio = audio
vad_audio = np.round(vad_audio * 32768.0).astype(np.int16)
vad_audio_bytes = vad_audio.tobytes()
return duration_after_vad, vad_audio_bytes, round(time.time() - _st, 4)
except Exception as e:
msg = f"[asr vad error] audio_len: {len(ori_audio)/(sr*2):.3f} s, trace: {traceback.format_exc()}"
print(msg)
return -1, ori_audio, round(time.time() - _st, 4)
def warm_up():
frames = b"\x00\x00" * 1024 * 2 # 1024 frames of 2 bytes each
dur, frames, tcost = run_vad(frames, 16000)
print(f"warm up done, time_cost: {tcost:.3f} s")
def save_tmp_audio(audio_bytes):
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmpfile:
file_name = tmpfile.name
audio = AudioSegment(
data=audio_bytes,
sample_width=OUT_SAMPLE_WIDTH,
frame_rate=OUT_RATE,
channels=OUT_CHANNELS,
)
audio.export(file_name, format="wav")
return file_name
def speaking(status):
# Initialize PyAudio
p = pyaudio.PyAudio()
# Open PyAudio stream
stream = p.open(
format=OUT_FORMAT, channels=OUT_CHANNELS, rate=OUT_RATE, output=True
)
audio_buffer = io.BytesIO()
wf = wave.open(audio_buffer, "wb")
wf.setnchannels(IN_CHANNELS)
wf.setsampwidth(IN_SAMPLE_WIDTH)
wf.setframerate(IN_RATE)
total_frames = b"".join(st.session_state.frames)
dur = len(total_frames) / (IN_RATE * IN_CHANNELS * IN_SAMPLE_WIDTH)
status.warning(f"Speaking... recorded audio duration: {dur:.3f} s")
wf.writeframes(total_frames)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmpfile:
with open(tmpfile.name, "wb") as f:
f.write(audio_buffer.getvalue())
file_name = tmpfile.name
with st.chat_message("user"):
st.audio(file_name, format="audio/wav", loop=False, autoplay=False)
st.session_state.messages.append(
{"role": "assistant", "content": file_name, "type": "audio"}
)
st.session_state.frames = []
audio_bytes = audio_buffer.getvalue()
base64_encoded = str(base64.b64encode(audio_bytes), encoding="utf-8")
files = {"audio": base64_encoded}
output_audio_bytes = b""
with requests.post(API_URL, json=files, stream=True) as response:
try:
for chunk in response.iter_content(chunk_size=OUT_CHUNK):
if chunk:
# Convert chunk to numpy array
output_audio_bytes += chunk
audio_data = np.frombuffer(chunk, dtype=np.int8)
# Play audio
stream.write(audio_data)
except Exception as e:
st.error(f"Error during audio streaming: {e}")
out_file = save_tmp_audio(output_audio_bytes)
with st.chat_message("assistant"):
st.audio(out_file, format="audio/wav", loop=False, autoplay=False)
st.session_state.messages.append(
{"role": "assistant", "content": out_file, "type": "audio"}
)
wf.close()
# Close PyAudio stream and terminate PyAudio
stream.stop_stream()
stream.close()
p.terminate()
st.session_state.speaking = False
st.session_state.recording = True
def recording(status):
audio = pyaudio.PyAudio()
stream = audio.open(
format=IN_FORMAT,
channels=IN_CHANNELS,
rate=IN_RATE,
input=True,
frames_per_buffer=IN_CHUNK,
)
temp_audio = b""
vad_audio = b""
start_talking = False
last_temp_audio = None
st.session_state.frames = []
while st.session_state.recording:
status.success("Listening...")
audio_bytes = stream.read(IN_CHUNK)
temp_audio += audio_bytes
if len(temp_audio) > IN_SAMPLE_WIDTH * IN_RATE * IN_CHANNELS * VAD_STRIDE:
dur_vad, vad_audio_bytes, time_vad = run_vad(temp_audio, IN_RATE)
print(f"duration_after_vad: {dur_vad:.3f} s, time_vad: {time_vad:.3f} s")
if dur_vad > 0.2 and not start_talking:
if last_temp_audio is not None:
st.session_state.frames.append(last_temp_audio)
start_talking = True
if start_talking:
st.session_state.frames.append(temp_audio)
if dur_vad < 0.1 and start_talking:
st.session_state.recording = False
print(f"speech end detected. excit")
last_temp_audio = temp_audio
temp_audio = b""
stream.stop_stream()
stream.close()
audio.terminate()
def main():
st.title("Chat Mini-Omni Demo")
status = st.empty()
if "warm_up" not in st.session_state:
warm_up()
st.session_state.warm_up = True
if "start" not in st.session_state:
st.session_state.start = False
if "recording" not in st.session_state:
st.session_state.recording = False
if "speaking" not in st.session_state:
st.session_state.speaking = False
if "frames" not in st.session_state:
st.session_state.frames = []
if not st.session_state.start:
status.warning("Click Start to chat")
start_col, stop_col, _ = st.columns([0.2, 0.2, 0.6])
start_button = start_col.button("Start", key="start_button")
# stop_button = stop_col.button("Stop", key="stop_button")
if start_button:
time.sleep(1)
st.session_state.recording = True
st.session_state.start = True
for message in st.session_state.messages:
with st.chat_message(message["role"]):
if message["type"] == "msg":
st.markdown(message["content"])
elif message["type"] == "img":
st.image(message["content"], width=300)
elif message["type"] == "audio":
st.audio(
message["content"], format="audio/wav", loop=False, autoplay=False
)
while st.session_state.start:
if st.session_state.recording:
recording(status)
if not st.session_state.recording and st.session_state.start:
st.session_state.speaking = True
speaking(status)
# if stop_button:
# status.warning("Stopped, click Start to chat")
# st.session_state.start = False
# st.session_state.recording = False
# st.session_state.frames = []
# break
if __name__ == "__main__":
main()
|