app.py: defining the correct device
Browse files
app.py
CHANGED
@@ -1,76 +1,79 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
|
3 |
-
from PIL import Image
|
4 |
-
from torchvision.transforms import Compose, ToTensor, Resize, Normalize
|
5 |
-
import numpy as np
|
6 |
-
import imageio
|
7 |
-
import tempfile
|
8 |
-
|
9 |
-
from utils.utils import denorm
|
10 |
-
from model.hub import MultiInputResShiftHub
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
gr.
|
53 |
-
|
54 |
-
|
55 |
-
gr.
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
"
|
64 |
-
"
|
65 |
-
"
|
66 |
-
"-
|
67 |
-
"
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
76 |
demo.launch(max_threads=1)
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
from PIL import Image
|
4 |
+
from torchvision.transforms import Compose, ToTensor, Resize, Normalize
|
5 |
+
import numpy as np
|
6 |
+
import imageio
|
7 |
+
import tempfile
|
8 |
+
|
9 |
+
from utils.utils import denorm
|
10 |
+
from model.hub import MultiInputResShiftHub
|
11 |
+
|
12 |
+
import torch
|
13 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
+
|
15 |
+
model = MultiInputResShiftHub.from_pretrained("vfontech/Multiple-Input-Resshift-VFI")
|
16 |
+
model.requires_grad_(False).to(device).eval()
|
17 |
+
|
18 |
+
transform = Compose([
|
19 |
+
Resize((256, 448)),
|
20 |
+
ToTensor(),
|
21 |
+
Normalize(mean=[0.5]*3, std=[0.5]*3),
|
22 |
+
])
|
23 |
+
|
24 |
+
def to_numpy(img_tensor):
|
25 |
+
img_np = denorm(img_tensor, mean=[0.5]*3, std=[0.5]*3).squeeze().permute(1, 2, 0).cpu().numpy()
|
26 |
+
img_np = np.clip(img_np, 0, 1)
|
27 |
+
return (img_np * 255).astype(np.uint8)
|
28 |
+
|
29 |
+
def interpolate(img0_pil, img2_pil, tau, num_samples):
|
30 |
+
img0 = transform(img0_pil.convert("RGB")).unsqueeze(0).to(device)
|
31 |
+
img2 = transform(img2_pil.convert("RGB")).unsqueeze(0).to(device)
|
32 |
+
|
33 |
+
if num_samples == 1:
|
34 |
+
# Unique image
|
35 |
+
img1 = model.reverse_process([img0, img2], tau)
|
36 |
+
return Image.fromarray(to_numpy(img1)), None
|
37 |
+
else:
|
38 |
+
# Múltiples imágenes → video
|
39 |
+
frames = [to_numpy(img0)]
|
40 |
+
for t in np.linspace(0, 1, num_samples):
|
41 |
+
img = model.reverse_process([img0, img2], float(t))
|
42 |
+
frames.append(to_numpy(img))
|
43 |
+
frames.append(to_numpy(img2))
|
44 |
+
|
45 |
+
temp_path = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
|
46 |
+
imageio.mimsave(temp_path, frames, fps=8)
|
47 |
+
return None, temp_path
|
48 |
+
|
49 |
+
demo = gr.Interface(
|
50 |
+
fn=interpolate,
|
51 |
+
inputs=[
|
52 |
+
gr.Image(type="pil", label="Initial Image (frame1)"),
|
53 |
+
gr.Image(type="pil", label="Final Image (frame3)"),
|
54 |
+
gr.Slider(0.0, 1.0, step=0.05, value=0.5, label="Tau Value (only if Num Samples = 1)"),
|
55 |
+
gr.Slider(1, 15, step=1, value=1, label="Number of Samples"),
|
56 |
+
],
|
57 |
+
outputs=[
|
58 |
+
gr.Image(label="Interpolated Image (if num_samples = 1)"),
|
59 |
+
gr.Video(label="Interpolation in video (if num_samples > 1)"),
|
60 |
+
],
|
61 |
+
title="Multi-Input ResShift Diffusion VFI",
|
62 |
+
description=(
|
63 |
+
"📄 [arXiv Paper](https://arxiv.org/pdf/2504.05402) • "
|
64 |
+
"🤗 [Model](https://huggingface.co/vfontech/Multiple-Input-Resshift-VFI) • "
|
65 |
+
"🧪 [Colab](https://colab.research.google.com/drive/1MGYycbNMW6Mxu5MUqw_RW_xxiVeHK5Aa#scrollTo=EKaYCioiP3tQ) • "
|
66 |
+
"🌐 [GitHub](https://github.com/VicFonch/Multi-Input-Resshift-Diffusion-VFI)\n\n"
|
67 |
+
"Video interpolation using Conditional Residual Diffusion.\n"
|
68 |
+
"- All images are resized to 256x448.\n"
|
69 |
+
"- If `Number of Samples` = 1, generates only one intermediate image with the given Tau value.\n"
|
70 |
+
"- If `Number of Samples` > 1, ignores Tau and generates a sequence of interpolated images."
|
71 |
+
),
|
72 |
+
examples=[
|
73 |
+
["_data/example_images/frame1.png", "_data/example_images/frame3.png", 0.5],
|
74 |
+
],
|
75 |
+
)
|
76 |
+
|
77 |
+
if __name__ == "__main__":
|
78 |
+
demo.queue(max_size=12)
|
79 |
demo.launch(max_threads=1)
|