|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from kornia.color import rgb_to_lab |
|
|
|
from utils.utils import morph_open |
|
|
|
from modules.cupy_module.softsplat import FunctionSoftsplat |
|
|
|
class HalfWarper(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
@staticmethod |
|
def backward_wrapping( |
|
img: torch.Tensor, |
|
flow: torch.Tensor, |
|
resample: str = 'bilinear', |
|
padding_mode: str = 'border', |
|
align_corners: bool = False |
|
) -> torch.Tensor: |
|
if len(img.shape) != 4: img = img[None,] |
|
if len(flow.shape) != 4: flow = flow[None,] |
|
|
|
q = 2 * flow / torch.tensor([ |
|
flow.shape[-2], flow.shape[-1], |
|
], device=flow.device, dtype=torch.float)[None,:,None,None] |
|
|
|
q = q + torch.stack(torch.meshgrid( |
|
torch.linspace(-1, 1, flow.shape[-2]), |
|
torch.linspace(-1, 1, flow.shape[-1]), |
|
))[None,].to(flow.device) |
|
|
|
if img.dtype != q.dtype: |
|
img = img.type(q.dtype) |
|
|
|
return F.grid_sample( |
|
img, |
|
q.flip(dims=(1,)).permute(0, 2, 3, 1).contiguous(), |
|
mode = resample, |
|
padding_mode = padding_mode, |
|
align_corners = align_corners, |
|
) |
|
|
|
@staticmethod |
|
def forward_warpping( |
|
img: torch.Tensor, |
|
flow: torch.Tensor, |
|
mode: str = 'softmax', |
|
metric: torch.Tensor | None = None, |
|
mask: bool = True |
|
) -> torch.Tensor: |
|
if len(img.shape) != 4: img = img[None,] |
|
if len(flow.shape) != 4: flow = flow[None,] |
|
if metric is not None and len(metric.shape)!=4: metric = metric[None,] |
|
|
|
flow = flow.flip(dims=(1,)) |
|
if img.dtype != torch.float32: |
|
img = img.type(torch.float32) |
|
if flow.dtype != torch.float32: |
|
flow = flow.type(torch.float32) |
|
if metric is not None and metric.dtype != torch.float32: |
|
metric = metric.type(torch.float32) |
|
|
|
assert img.device == flow.device |
|
if metric is not None: assert img.device == metric.device |
|
if img.device.type=='cpu': |
|
img = img.to('cuda') |
|
flow = flow.to('cuda') |
|
if metric is not None: metric = metric.to('cuda') |
|
|
|
if mask: |
|
batch, _, h, w = img.shape |
|
img = torch.cat([img, torch.ones(batch, 1, h, w, dtype=img.dtype, device=img.device)], dim=1) |
|
|
|
return FunctionSoftsplat(img, flow, metric, mode) |
|
|
|
@staticmethod |
|
def z_metric( |
|
img0: torch.Tensor, |
|
img1: torch.Tensor, |
|
flow0to1: torch.Tensor, |
|
flow1to0: torch.Tensor |
|
) -> tuple[torch.Tensor, torch.Tensor]: |
|
img0 = rgb_to_lab(img0[:,:3]) |
|
img1 = rgb_to_lab(img1[:,:3]) |
|
z1to0 = -0.1*(img1 - HalfWarper.backward_wrapping(img0, flow1to0)).norm(dim=1, keepdim=True) |
|
z0to1 = -0.1*(img0 - HalfWarper.backward_wrapping(img1, flow0to1)).norm(dim=1, keepdim=True) |
|
return z0to1, z1to0 |
|
|
|
def forward( |
|
self, |
|
I0: torch.Tensor, |
|
I1: torch.Tensor, |
|
flow0to1: torch.Tensor, |
|
flow1to0: torch.Tensor, |
|
z0to1: torch.Tensor | None = None, |
|
z1to0: torch.Tensor | None = None, |
|
tau: float | None = None, |
|
morph_kernel_size: int = 5, |
|
mask: bool = True |
|
) -> tuple[torch.Tensor, torch.Tensor]: |
|
|
|
if z1to0 is None or z0to1 is None: |
|
z0to1, z1to0 = self.z_metric(I0, I1, flow0to1, flow1to0) |
|
|
|
if tau is not None: |
|
flow0tot = tau*flow0to1 |
|
flow1tot = (1 - tau)*flow1to0 |
|
else: |
|
flow0tot = flow0to1 |
|
flow1tot = flow1to0 |
|
|
|
|
|
fw0to1 = HalfWarper.forward_warpping(I0, flow0tot, mode='softmax', metric=z0to1, mask=True) |
|
fw1to0 = HalfWarper.forward_warpping(I1, flow1tot, mode='softmax', metric=z1to0, mask=True) |
|
|
|
wrapped_image0tot = fw0to1[:,:-1] |
|
wrapped_image1tot = fw1to0[:,:-1] |
|
mask0tot = morph_open(fw0to1[:,-1:], k=morph_kernel_size) |
|
mask1tot = morph_open(fw1to0[:,-1:], k=morph_kernel_size) |
|
|
|
base0 = mask0tot*wrapped_image0tot + (1 - mask0tot)*wrapped_image1tot |
|
base1 = mask1tot*wrapped_image1tot + (1 - mask1tot)*wrapped_image0tot |
|
|
|
if mask: |
|
base0 = torch.cat([base0, mask0tot], dim=1) |
|
base1 = torch.cat([base1, mask1tot], dim=1) |
|
return base0, base1 |