Spaces:
Running
on
L4
Running
on
L4
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import rearrange | |
from einops.layers.torch import Rearrange | |
class GroupNorm(nn.Module): | |
def __init__(self, in_channels: int, num_groups: int = 32): | |
super(GroupNorm, self).__init__() | |
self.gn = nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
return self.gn(x) | |
class AdaLayerNorm(nn.Module): | |
def __init__(self, channels: int, cond_channels: int = 0, return_scale_shift: bool = True): | |
super(AdaLayerNorm, self).__init__() | |
self.norm = nn.LayerNorm(channels) | |
self.return_scale_shift = return_scale_shift | |
if cond_channels != 0: | |
if return_scale_shift: | |
self.proj = nn.Linear(cond_channels, channels * 3, bias=False) | |
else: | |
self.proj = nn.Linear(cond_channels, channels * 2, bias=False) | |
nn.init.xavier_uniform_(self.proj.weight) | |
def expand_dims(self, tensor: torch.Tensor, dims: list[int]) -> torch.Tensor: | |
for dim in dims: | |
tensor = tensor.unsqueeze(dim) | |
return tensor | |
def forward(self, x: torch.Tensor, cond: torch.Tensor | None = None) -> torch.Tensor: | |
x = self.norm(x) | |
if cond is None: | |
return x | |
dims = list(range(1, len(x.shape) - 1)) | |
if self.return_scale_shift: | |
gamma, beta, sigma = self.proj(cond).chunk(3, dim=-1) | |
gamma, beta, sigma = [self.expand_dims(t, dims) for t in (gamma, beta, sigma)] | |
return x * (1 + gamma) + beta, sigma | |
else: | |
gamma, beta = self.proj(cond).chunk(2, dim=-1) | |
gamma, beta = [self.expand_dims(t, dims) for t in (gamma, beta)] | |
return x * (1 + gamma) + beta | |
class SinusoidalPositionalEmbedding(nn.Module): | |
def __init__(self, emb_dim: int = 256): | |
super(SinusoidalPositionalEmbedding, self).__init__() | |
self.channels = emb_dim | |
def forward(self, t: torch.Tensor) -> torch.Tensor: | |
inv_freq = 1.0 / ( | |
10000 | |
** (torch.arange(0, self.channels, 2, device=t.device).float() / self.channels) | |
) | |
pos_enc_a = torch.sin(t.repeat(1, self.channels // 2) * inv_freq) | |
pos_enc_b = torch.cos(t.repeat(1, self.channels // 2) * inv_freq) | |
pos_enc = torch.cat([pos_enc_a, pos_enc_b], dim=-1) | |
return pos_enc | |
class GatedConv2d(nn.Module): | |
def __init__(self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size: int = 3, | |
padding: int = 1, | |
bias: bool = False): | |
super(GatedConv2d, self).__init__() | |
self.gate_conv = nn.Conv2d(in_channels, out_channels, kernel_size=1) | |
self.feature_conv = nn.Conv2d(in_channels, | |
out_channels, | |
kernel_size=kernel_size, | |
padding=padding, | |
bias=bias) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
gate = torch.sigmoid(self.gate_conv(x)) | |
feature = F.silu(self.feature_conv(x)) | |
return gate * feature | |
class ResGatedBlock(nn.Module): | |
def __init__(self, | |
in_channels: int, | |
out_channels: int, | |
mid_channels: int | None = None, | |
num_groups: int = 32, | |
residual: bool = True, | |
emb_channels: int | None = None, | |
gated_conv: bool = False): | |
super().__init__() | |
self.residual = residual | |
self.emb_channels = emb_channels | |
if not mid_channels: | |
mid_channels = out_channels | |
if gated_conv: conv2d = GatedConv2d | |
else: conv2d = nn.Conv2d | |
self.conv1 = conv2d(in_channels, mid_channels, kernel_size=3, padding=1, bias=False) | |
self.norm1 = GroupNorm(mid_channels, num_groups=num_groups) | |
self.nonlienrity = nn.SiLU() | |
if emb_channels: | |
self.emb_proj = nn.Linear(emb_channels, mid_channels) | |
self.conv2 = conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False) | |
self.norm2 = GroupNorm(out_channels, num_groups=num_groups) | |
if in_channels != out_channels: | |
self.skip = conv2d(in_channels, out_channels, kernel_size=1, padding=0) | |
def double_conv(self, x: torch.Tensor, emb: torch.Tensor | None = None) -> torch.Tensor: | |
x = self.conv1(x) | |
x = self.norm1(x) | |
x = self.nonlienrity(x) | |
if emb is not None and self.emb_channels is not None: | |
x = x + self.emb_proj(emb)[:,:,None,None] | |
x = self.conv2(x) | |
return self.norm2(x) | |
def forward(self, x: torch.Tensor, emb: torch.Tensor | None = None) -> torch.Tensor: | |
if self.residual: | |
if hasattr(self, 'skip'): | |
return F.silu(self.skip(x) + self.double_conv(x, emb)) | |
return F.silu(x + self.double_conv(x, emb)) | |
else: | |
return self.double_conv(x, emb) | |
class Downsample(nn.Module): | |
def __init__(self, | |
in_channels: int, | |
out_channels: int, | |
use_conv: bool=True): | |
super().__init__() | |
self.use_conv = use_conv | |
if use_conv: | |
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=0) | |
else: | |
assert in_channels == out_channels | |
self.conv = nn.AvgPool2d(kernel_size=2, stride=2) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
pad = (0, 1, 0, 1) | |
hidden_states = F.pad(x, pad, mode="constant", value=0) | |
return self.conv(hidden_states) if self.use_conv else self.conv(x) | |
class Upsample(nn.Module): | |
def __init__(self, | |
in_channels: int, | |
out_channels: int, | |
use_conv: bool=True): | |
super().__init__() | |
self.use_conv = use_conv | |
if use_conv: | |
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = F.interpolate(x, | |
scale_factor = (2, 2) if x.dim() == 4 else (1, 2, 2), | |
mode='nearest') | |
return self.conv(x) if self.use_conv else x | |
class FeedForward(nn.Module): | |
def __init__(self, | |
dim: int, | |
emb_channels: int, | |
expansion_rate: int = 4, | |
dropout: float = 0.0): | |
super().__init__() | |
inner_dim = int(dim * expansion_rate) | |
self.norm = AdaLayerNorm(dim, emb_channels) | |
self.net = nn.Sequential( | |
nn.Linear(dim, inner_dim), | |
nn.SiLU(), | |
nn.Dropout(dropout), | |
nn.Linear(inner_dim, dim), | |
nn.Dropout(dropout) | |
) | |
self.__init_weights() | |
def __init_weights(self): | |
nn.init.xavier_uniform_(self.net[0].weight) | |
nn.init.xavier_uniform_(self.net[3].weight) | |
def forward(self, x: torch.Tensor, emb: torch.Tensor | None = None) -> torch.Tensor: | |
x, sigma = self.norm(x, emb) | |
return self.net(x) * sigma | |
class Attention(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
emb_channels: int = 512, | |
dim_head: int = 32, | |
dropout: float = 0., | |
window_size: int = 7 | |
): | |
super().__init__() | |
assert (dim % dim_head) == 0, 'dimension should be divisible by dimension per head' | |
self.heads = dim // dim_head | |
self.scale = dim_head ** -0.5 | |
self.norm = AdaLayerNorm(dim, emb_channels) | |
self.to_q = nn.Linear(dim, dim, bias = False) | |
self.to_k = nn.Linear(dim, dim, bias = False) | |
self.to_v = nn.Linear(dim, dim, bias = False) | |
self.attend = nn.Sequential( | |
nn.Softmax(dim = -1), | |
nn.Dropout(dropout) | |
) | |
self.to_out = nn.Sequential( | |
nn.Linear(dim, dim, bias = False), | |
nn.Dropout(dropout) | |
) | |
self.rel_pos_bias = nn.Embedding((2 * window_size - 1) ** 2, self.heads) | |
pos = torch.arange(window_size) | |
grid = torch.stack(torch.meshgrid(pos, pos, indexing = 'ij')) | |
grid = rearrange(grid, 'c i j -> (i j) c') | |
rel_pos = rearrange(grid, 'i ... -> i 1 ...') - rearrange(grid, 'j ... -> 1 j ...') | |
rel_pos += window_size - 1 | |
rel_pos_indices = (rel_pos * torch.tensor([2 * window_size - 1, 1])).sum(dim = -1) | |
self.register_buffer('rel_pos_indices', rel_pos_indices, persistent = False) | |
def forward(self, x: torch.Tensor, emb: torch.Tensor | None = None) -> torch.Tensor: | |
batch, height, width, window_height, window_width, _, device, h = *x.shape, x.device, self.heads | |
x, sigma = self.norm(x, emb) | |
x = rearrange(x, 'b x y w1 w2 d -> (b x y) (w1 w2) d') | |
q = self.to_q(x) | |
k = self.to_k(x) | |
v = self.to_v(x) | |
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v)) # split heads | |
q = q * self.scale | |
sim = torch.einsum('b h i d, b h j d -> b h i j', q, k) # sim | |
bias = self.rel_pos_bias(self.rel_pos_indices) | |
sim = sim + rearrange(bias, 'i j h -> h i j')# add positional bias | |
attn = self.attend(sim) # attention | |
out = torch.einsum('b h i j, b h j d -> b h i d', attn, v) # aggregate | |
out = rearrange(out, 'b h (w1 w2) d -> b w1 w2 (h d)', w1 = window_height, w2 = window_width) # merge heads | |
out = self.to_out(out) # combine heads out | |
return rearrange(out, '(b x y) ... -> b x y ...', x = height, y = width) * sigma | |
class MaxViTBlock(nn.Module): | |
def __init__( | |
self, | |
channels: int, | |
emb_channels: int = 512, | |
heads: int = 1, | |
window_size: int = 8, | |
window_attn: bool = True, | |
grid_attn: bool = True, | |
expansion_rate: int = 4, | |
dropout: float = 0.0, | |
): | |
super(MaxViTBlock, self).__init__() | |
dim_head = channels // heads | |
layer_dim = dim_head * heads | |
w = window_size | |
self.window_attn = window_attn | |
self.grid_attn = grid_attn | |
if window_attn: | |
self.wind_rearrange_forward = Rearrange('b d (x w1) (y w2) -> b x y w1 w2 d', w1 = w, w2 = w) # block-like attention | |
self.wind_attn = Attention( | |
dim = layer_dim, | |
emb_channels = emb_channels, | |
dim_head = dim_head, | |
dropout = dropout, | |
window_size = w | |
) | |
self.wind_ff = FeedForward(dim = layer_dim, | |
emb_channels = emb_channels, | |
expansion_rate = expansion_rate, | |
dropout = dropout) | |
self.wind_rearrange_backward = Rearrange('b x y w1 w2 d -> b d (x w1) (y w2)') | |
if grid_attn: | |
self.grid_rearrange_forward = Rearrange('b d (w1 x) (w2 y) -> b x y w1 w2 d', w1 = w, w2 = w) # grid-like attention | |
self.grid_attn = Attention( | |
dim = layer_dim, | |
emb_channels = emb_channels, | |
dim_head = dim_head, | |
dropout = dropout, | |
window_size = w | |
) | |
self.grid_ff = FeedForward(dim = layer_dim, | |
emb_channels = emb_channels, | |
expansion_rate = expansion_rate, | |
dropout = dropout) | |
self.grid_rearrange_backward = Rearrange('b x y w1 w2 d -> b d (w1 x) (w2 y)') | |
def forward(self, x: torch.Tensor, emb: torch.Tensor | None = None) -> torch.Tensor: | |
if self.window_attn: | |
x = self.wind_rearrange_forward(x) | |
x = x + self.wind_attn(x, emb = emb) | |
x = x + self.wind_ff(x, emb = emb) | |
x = self.wind_rearrange_backward(x) | |
if self.grid_attn: | |
x = self.grid_rearrange_forward(x) | |
x = x + self.grid_attn(x, emb = emb) | |
x = x + self.grid_ff(x, emb = emb) | |
x = self.grid_rearrange_backward(x) | |
return x | |