File size: 8,311 Bytes
587665f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import torch
import torch.nn as nn
from torch.nn.functional import interpolate

import math
from tqdm import tqdm

from modules.feature_extactor import Extractor
from modules.half_warper import HalfWarper
from modules.cupy_module.nedt import NEDT
from modules.flow_models.flow_models import (
    RAFTFineFlow,
    PWCFineFlow
)
from modules.synthesizer import Synthesis

class FeatureWarper(nn.Module):
    def __init__(
        self,
        in_channels: int = 3, 
        channels: list[int] = [32, 64, 128, 256],
    ):
        super().__init__()    
        channels = [in_channels + 1] + channels
        
        self.half_warper = HalfWarper()
        self.feature_extractor = Extractor(channels)
        self.nedt = NEDT()

    def forward(
        self, 
        I0: torch.Tensor, 
        I1: torch.Tensor, 
        flow0to1: torch.Tensor, 
        flow1to0: torch.Tensor, 
        tau: torch.Tensor = None
    ) -> tuple[list[torch.Tensor], list[torch.Tensor]]:
        assert tau.shape == (I0.shape[0], 2), "tau shape must be (batch, 2)"

        flow0tot = tau[:, 0][:, None, None, None] * flow0to1
        flow1tot = tau[:, 1][:, None, None, None] * flow1to0

        I0 = torch.cat([I0, self.nedt(I0)], dim=1)
        I1 = torch.cat([I1, self.nedt(I1)], dim=1)

        z0to1, z1to0 = HalfWarper.z_metric(I0, I1, flow0to1, flow1to0)
        base0, base1 = self.half_warper(I0, I1, flow0tot, flow1tot, z0to1, z1to0)
        warped0, warped1 = [base0], [base1]

        features0 = self.feature_extractor(I0)
        features1 = self.feature_extractor(I1)

        for feat0, feat1 in zip(features0, features1):
            f0 = interpolate(flow0tot, size=feat0.shape[2:], mode='bilinear', align_corners=False)
            f1 = interpolate(flow1tot, size=feat0.shape[2:], mode='bilinear', align_corners=False)
            z0 = interpolate(z0to1, size=feat0.shape[2:], mode='bilinear', align_corners=False)
            z1 = interpolate(z1to0, size=feat0.shape[2:], mode='bilinear', align_corners=False)
            w0, w1 = self.half_warper(feat0, feat1, f0, f1, z0, z1)
            warped0.append(w0)
            warped1.append(w1)
        return warped0, warped1

class MultiInputResShift(nn.Module):
    def __init__(
        self,
        kappa: float=2.0,
        p: float =0.3, 
        min_noise_level: float=0.04,
        etas_end: float=0.99, 
        timesteps: int=15,
        flow_model: str = 'raft',
        flow_kwargs: dict = {},
        warping_kwargs: dict = {},
        synthesis_kwargs: dict = {}
    ):
        super().__init__()

        self.timesteps = timesteps
        self.kappa = kappa
        self.eta_partition = None

        sqrt_eta_1 = min(min_noise_level / kappa, min_noise_level, math.sqrt(0.001))
        b0 = math.exp(1/float(timesteps - 1) * math.log(etas_end/sqrt_eta_1))
        base = torch.ones(timesteps)*b0
        beta = ((torch.linspace(0,1,timesteps))**p)*(timesteps-1)
        sqrt_eta = torch.pow(base, beta) * sqrt_eta_1

        self.register_buffer("sqrt_sum_eta", sqrt_eta)
        self.register_buffer("sum_eta", sqrt_eta**2)

        sum_prev_eta = torch.roll(self.sum_eta, 1)
        sum_prev_eta[0] = 0
        self.register_buffer("sum_prev_eta", sum_prev_eta)

        self.register_buffer("sum_alpha", self.sum_eta - self.sum_prev_eta)

        self.register_buffer("backward_mean_c1", self.sum_prev_eta / self.sum_eta)
        self.register_buffer("backward_mean_c2", self.sum_alpha / self.sum_eta)
        self.register_buffer("backward_std", self.kappa*torch.sqrt(self.sum_prev_eta*self.sum_alpha/self.sum_eta))

        if flow_model == 'raft':
            self.flow_model = RAFTFineFlow(**flow_kwargs)
        elif flow_model == 'pwc':
            self.flow_model = PWCFineFlow(**flow_kwargs)
        else:
            raise ValueError(f"Flow model {flow_model} not supported")

        self.feature_warper = FeatureWarper(**warping_kwargs)
        self.synthesis = Synthesis(**synthesis_kwargs)

    def forward_process(
        self, 
        x: torch.Tensor | None, 
        Y: list[torch.Tensor], 
        tau: torch.Tensor | float | None, 
        t: torch.Tensor | int
    ) -> torch.Tensor:
        if tau is None:
            tau: torch.Tensor = torch.full((x.shape[0], len(Y)), 0.5, device=x.device, dtype=x.dtype)
        elif isinstance(tau, float):
            assert tau >= 0 and tau <= 1, "tau must be between 0 and 1"
            tau: torch.Tensor = torch.cat([
                torch.full((x.shape[0], 1), tau, device=x.device, dtype=x.dtype),
                torch.full((x.shape[0], 1), 1 - tau, device=x.device, dtype=x.dtype)
            ], dim=1)
        if not torch.is_tensor(t):
            t: torch.Tensor = torch.tensor([t], device=x.device, dtype=torch.long)
        if x is None:
            x: torch.Tensor = torch.zeros_like(Y[0])
        
        eta = self.sum_eta[t][:, None] * tau
        eta = eta[:, :, None, None, None].transpose(0, 1)

        e_i = torch.stack([y - x for y in Y])
        mean = x + (eta*e_i).sum(dim=0)

        sqrt_sum_eta = self.sqrt_sum_eta[t][:, None, None, None]
        std = self.kappa*sqrt_sum_eta
        epsilon = torch.randn_like(x)

        return mean + std*epsilon

    @torch.inference_mode()
    def reverse_process(
        self, 
        Y: list[torch.Tensor],
        tau: torch.Tensor | float, 
        flows: list[torch.Tensor] | None = None,
    ) -> torch.Tensor:
        y = Y[0]
        batch, device, dtype = y.shape[0], y.device, y.dtype
        
        if isinstance(tau, float):
            assert tau >= 0 and tau <= 1, "tau must be between 0 and 1"
            tau: torch.Tensor = torch.cat([
                torch.full((batch, 1), tau, device=device, dtype=dtype),
                torch.full((batch, 1), 1 - tau, device=device, dtype=dtype)
            ], dim=1)
        if flows is None:
           flow0to1, flow1to0 = self.flow_model(Y[0], Y[1])
        else:
            flow0to1, flow1to0 = flows
        warp0to1, warp1to0 = self.feature_warper(Y[0], Y[1], flow0to1, flow1to0, tau)

        T = torch.tensor([self.timesteps-1,] * batch, device=device, dtype=torch.long)
        x = self.forward_process(torch.zeros_like(Y[0]), [warp0to1[0][:, :3], warp1to0[0][:, :3]], tau, T)

        pbar = tqdm(total=self.timesteps, desc="Reversing Process")
        for i in reversed(range(self.timesteps)):
            t = torch.ones(batch, device = device, dtype=torch.long) * i 
            
            predicted_x0 = self.synthesis(x, warp0to1, warp1to0, t)
            
            mean_c1 = self.backward_mean_c1[t][:, None, None, None]  
            mean_c2 = self.backward_mean_c2[t][:, None, None, None]
            std = self.backward_std[t][:, None, None, None]
            
            eta = self.sum_eta[t][:, None] * tau
            prev_eta = self.sum_prev_eta[t][:, None] * tau
            eta = eta[:, :, None, None, None].transpose(0, 1)
            prev_eta = prev_eta[:, :, None, None, None].transpose(0, 1)
            e_i = torch.stack([y - predicted_x0 for y in Y])

            mean = (
                mean_c1*(x + (eta*e_i).sum(dim=0)) 
                + mean_c2*predicted_x0 
                - (prev_eta*e_i).sum(dim=0)
            )

            x = mean + std*torch.randn_like(x)
            pbar.update(1)
        pbar.close()
        return x

    # Training Step Only
    def forward(
        self, 
        I0: torch.Tensor, 
        It: torch.Tensor, 
        I1: torch.Tensor, 
        flow1to0: torch.Tensor | None = None, 
        flow0to1: torch.Tensor | None = None, 
        tau: torch.Tensor | None = None,
        t: torch.Tensor | None = None
    ) -> torch.Tensor:

        if tau is None:
            tau = torch.full((It.shape[0], 2), 0.5, device=It.device, dtype=It.dtype)

        if flow0to1 is None or flow1to0 is None:
            flow0to1, flow1to0 = self.flow_model(I0, I1)
        
        if t is None:
            t = torch.randint(low=1, high=self.timesteps, size=(It.shape[0],), device=It.device, dtype=torch.long)
        
        warp0to1, warp1to0 = self.feature_warper(I0, I1, flow0to1, flow1to0, tau)
        x_t = self.forward_process(It, [warp0to1[0][:, :3], warp1to0[0][:, :3]], tau, t)

        predicted_It = self.synthesis(x_t, warp0to1, warp1to0, t)
        return predicted_It