Spaces:
Running
Running
File size: 8,586 Bytes
a438728 9db3523 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
# PDFs
from langchain_community.document_loaders import PyPDFLoader
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings as HFE
from langchain.schema import Document
# Groq
from langchain_groq import ChatGroq
from langchain_core.messages import HumanMessage
from langchain_community.chat_message_histories import ChatMessageHistory
from langchain_core.chat_history import BaseChatMessageHistory
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from groq import Groq
# Expanded Queries
import ast
# Cross Encoder
from sentence_transformers import CrossEncoder
# BM25
from rank_bm25 import BM25Okapi
import numpy as np
# Gradio
import gradio as gr
# GROQ_API = userdata.get('GROQ_API')
embed_model = "sentence-transformers/all-MiniLM-L6-v2"
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2')
prompt = ChatPromptTemplate.from_messages(
[
("system", """
You are a helpful HR assistant specializing in the resume screening phase.
Your goal is to identify the best, most suitable, or highest-potential
candidates whose qualifications align well with the provided job title
and job description. If a question or request falls outside the scope
of resume screening and candidate alignment,
please respond with 'I don't know'.
"""),
MessagesPlaceholder(variable_name="history", optional=True),
("system", "Context: {context}"),
("human", "{question}"),
]
)
query_expansion_prompt = ChatPromptTemplate([
("system", """
You are an expert HR assistant. Given a job description and a user query,
generate 3 alternative, diverse search queries that capture different
aspects of what makes a great candidate for this role. Each query should
focus on a different facet (e.g., skills, leadership, hands-on experience,
certifications, unique achievements).
If the job description is empty, generate a general job description for the role
mentioned in the user query and then create the 3 alternative search queries based on that.
Return ONLY the generated queries as a Python list of strings. Do not include
any other explanatory text or formatting.
"""),
("human", "Job Description: {job_description}\nUser Query: {user_query}")
])
JUDGE_PROMPT = """
You are an expert recruiter. Given the job description, the user query, and the system's answer, rate:
Faithfulness: Does the answer accurately reflect the resume(s) provided? (1-5)
Relevance: Does the answer address the job requirements and user query? (1-5)
Provide your feedback as follows:
Faithfulness: <score>
Relevance: <score>
Justification: <brief explanation>
Job Description:
{job_description}
User Query:
{user_query}
System Answer:
{system_answer}
"""
def load_single_pdf(path):
loader = PyPDFLoader(path)
pages = loader.load()
full_text = "\n".join([page.page_content for page in pages])
return Document(page_content=full_text)
def chunks_embed(chunks, model_name):
"""Create embeds for doc chunks and store in FAISS"""
embeds = HFE(model_name=model_name)
# Create FAISS index
db = FAISS.from_documents(chunks, embeds)
print(f"Created FAISS Index with {len(chunks)} documents.")
return db
def search_docs_mmr(db, query, k, fetch_k, lambda_mult):
"""
Retrieve the most similar docs to the query using MMR
(Maximum Marginal Relevance)
"""
if not db:
print("Error: No document database available")
return []
docs = db.max_marginal_relevance_search(
query, k=fetch_k, lambda_mult=lambda_mult
)
return docs
def combine_results(results):
# Combine the content from results to create context
context = ""
for doc in results:
context += doc.page_content + "\n"
return context
# 1. Prepare corpus for BM25
def prepare_bm25_corpus(docs):
# Tokenize for BM25 (simple whitespace split, can improve)
return [doc.page_content.lower().split() for doc in docs]
# 2. Initialize BM25
def init_bm25(docs):
corpus = prepare_bm25_corpus(docs)
return BM25Okapi(corpus)
# 3. BM25 Search
def bm25_search(bm25, query, docs, top_k=10):
query_tokens = query.lower().split()
scores = bm25.get_scores(query_tokens)
top_indices = np.argsort(scores)[::-1][:top_k]
return [docs[i] for i in top_indices], [scores[i] for i in top_indices]
# Hybrid Merge Functino
def hybrid_merge(semantic_results, bm25_results):
# Merge by union, keeping order (semantic first, then BM25 if not already present)
seen = set()
merged = []
for doc in semantic_results + bm25_results:
if doc.page_content not in seen:
merged.append(doc)
seen.add(doc.page_content)
return merged
def llm_judge_groq(api_key, job_description, user_query, system_answer):
judge_prompt = JUDGE_PROMPT.format(
job_description=job_description,
user_query=user_query,
system_answer=system_answer
)
client = Groq(api_key=api_key)
completion = client.chat.completions.create(
model="deepseek-r1-distill-llama-70b",
messages=[{"role": "user", "content": judge_prompt}],
max_tokens=512
)
return completion.choices[0].message.content
def screen_resumes(api_key, job_description, user_query, files):
embed_model = "sentence-transformers/all-MiniLM-L6-v2"
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2')
# Model and prompt setup (inside function, using user API key)
model = ChatGroq(model="llama-3.1-8b-instant", api_key=api_key)
history = {}
def get_session_history(session_id: str):
if session_id not in history:
history[session_id] = ChatMessageHistory()
return history[session_id]
with_message_history = RunnableWithMessageHistory(model, get_session_history)
chain = prompt | model
with_message_history = RunnableWithMessageHistory(
chain,
get_session_history,
input_messages_key="question",
history_messages_key="history"
)
# Load and process resumes
resume_paths = [file.name for file in files]
chunks = [load_single_pdf(path) for path in resume_paths]
embeds = chunks_embed(chunks, embed_model)
bm25 = init_bm25(chunks)
# Query Expansion
prompt_value = query_expansion_prompt.invoke({
"job_description": job_description,
"user_query": user_query,
})
expanded_queries_response = model.invoke(prompt_value.messages)
expanded_queries = ast.literal_eval(expanded_queries_response.content)
# Hybrid Retrieval
all_semantic = []
all_bm25 = []
for q in expanded_queries:
semantic_docs = search_docs_mmr(embeds, q, 10, 100, 0.7)
bm25_docs, _ = bm25_search(bm25, q, chunks, top_k=10)
all_semantic.extend(semantic_docs)
all_bm25.extend(bm25_docs)
merged_results = hybrid_merge(all_semantic, all_bm25)
unique_results_list = merged_results
# Cross-encoder Re-ranking
pairs = [(user_query, doc.page_content) for doc in unique_results_list]
scores = cross_encoder.predict(pairs)
ranked = sorted(zip(scores, unique_results_list), key=lambda x: x[0], reverse=True)
top_n = min(5, len(ranked))
ranked_top_n = [doc for score, doc in ranked[:top_n]]
context = "\n\n".join([doc.page_content for doc in ranked_top_n])
# LLM Final Reasoning
inputs = {
"context": context,
"question": user_query,
}
config = {"configurable": {"session_id": "GradioSession"}}
response = with_message_history.invoke(inputs, config=config)
system_output = response.content
# LLM-as-a-Judge Evaluation
judge_feedback = llm_judge_groq(api_key, job_description, user_query, system_output)
return system_output, context, judge_feedback
demo = gr.Interface(
fn=screen_resumes,
inputs=[
gr.Textbox(label="Groq API Key", type="password", lines=1, placeholder="sk..."),
gr.Textbox(lines=4, label="Job Description"),
gr.Textbox(lines=2, label="User Query"),
gr.File(file_count="multiple", label="Upload Resume PDFs")
],
outputs=[
gr.Textbox(label="Screening Result (LLM Output)"),
gr.Textbox(label="Top Ranked Resumes (Raw Text)"),
gr.Textbox(label="LLM-as-a-Judge Evaluation (DeepSeek)")
],
title="Resume Screening Assistant (Hybrid + LLM-as-a-Judge)",
description="Enter your Groq API key, upload resumes, enter a job description and query, get the best candidates with explanations, and see an automated evaluation."
)
demo.launch(share=True) |