|
|
|
|
|
import os |
|
from collections.abc import Iterator |
|
from threading import Thread |
|
|
|
import gradio as gr |
|
import spaces |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, pipeline |
|
from peft import PeftModel |
|
|
|
DESCRIPTION = "# 真空ジェネレータ\n<p>Imitate 真空 (@vericava)'s posts interactively</p>" |
|
|
|
if not torch.cuda.is_available(): |
|
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" |
|
|
|
MAX_MAX_NEW_TOKENS = 2048 |
|
DEFAULT_MAX_NEW_TOKENS = 1024 |
|
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "32768")) |
|
|
|
|
|
if torch.cuda.is_available(): |
|
model_id = "vericava/llm-jp-3-1.8b-instruct-lora-vericava17" |
|
base_model_id = "llm-jp/llm-jp-3-1.8b-instruct" |
|
tokenizer = AutoTokenizer.from_pretrained(base_model_id, trust_remote_code=True) |
|
tokenizer.chat_template = "{{bos_token}}{% for message in messages %}{% if message['role'] == 'user' %}{{ '\\n\\n### 前の投稿:\\n' + message['content'] + '' }}{% elif message['role'] == 'system' %}{{ '以下は、SNS上の投稿です。あなたはSNSの投稿生成botとして、次に続く投稿を考えなさい。説明はせず、投稿の内容のみを鉤括弧をつけずに答えよ。' + message['content'] }}{% elif message['role'] == 'assistant' %}{{ '\\n\\n### 次の投稿:\\n' + message['content'] + eos_token }}{% endif %}{% if loop.last and add_generation_prompt %}{{ '\\n\\n### 次の投稿:\\n' }}{% endif %}{% endfor %}" |
|
model = AutoModelForCausalLM.from_pretrained( |
|
base_model_id, |
|
trust_remote_code=True, |
|
) |
|
model.load_adapter(model_id) |
|
my_pipeline=pipeline( |
|
task="text-generation", |
|
model=model, |
|
tokenizer=tokenizer, |
|
do_sample=True, |
|
num_beams=1, |
|
) |
|
|
|
@spaces.GPU |
|
@torch.inference_mode() |
|
def generate( |
|
message: str, |
|
chat_history: list[tuple[str, str]], |
|
max_new_tokens: int = 1024, |
|
temperature: float = 0.7, |
|
top_p: float = 0.95, |
|
top_k: int = 50, |
|
repetition_penalty: float = 1.0, |
|
) -> Iterator[str]: |
|
from datetime import datetime, timezone, timedelta |
|
|
|
d=datetime.now(timezone(timedelta(hours=9), 'JST')) |
|
m=d.month |
|
if m < 3 or m > 11: |
|
season = '冬' |
|
elif m < 6: |
|
season = '春' |
|
elif m < 9: |
|
season = '夏' |
|
else: |
|
season = '秋' |
|
|
|
h=d.hour |
|
go = '午前' if h < 12 else '午後' |
|
h = h % 12 |
|
minute = d.minute |
|
time = go + str(h) + '時' + str(minute) + '分' |
|
|
|
messages = [ |
|
{"role": "system", "content": "なお今は日本の" + season + "で、時刻は" + time + "であるものとする。また、あなたは真空という名前のユーザであるとする。"}, |
|
{"role": "user", "content": message}, |
|
] |
|
|
|
output = my_pipeline( |
|
messages, |
|
temperature=temperature, |
|
max_new_tokens=max_new_tokens, |
|
) |
|
print(output) |
|
yield output[-1]["generated_text"][-1]["content"] |
|
|
|
demo = gr.ChatInterface( |
|
fn=generate, |
|
type="tuples", |
|
additional_inputs_accordion=gr.Accordion(label="詳細設定", open=False), |
|
additional_inputs=[ |
|
gr.Slider( |
|
label="Max new tokens", |
|
minimum=1, |
|
maximum=MAX_MAX_NEW_TOKENS, |
|
step=1, |
|
value=DEFAULT_MAX_NEW_TOKENS, |
|
), |
|
gr.Slider( |
|
label="Temperature", |
|
minimum=0.1, |
|
maximum=4.0, |
|
step=0.1, |
|
value=1.0, |
|
), |
|
gr.Slider( |
|
label="Top-p (nucleus sampling)", |
|
minimum=0.05, |
|
maximum=1.0, |
|
step=0.05, |
|
value=0.95, |
|
), |
|
gr.Slider( |
|
label="Top-k", |
|
minimum=1, |
|
maximum=1000, |
|
step=1, |
|
value=50, |
|
), |
|
gr.Slider( |
|
label="Repetition penalty", |
|
minimum=1.0, |
|
maximum=2.0, |
|
step=0.05, |
|
value=1.5, |
|
), |
|
], |
|
stop_btn=None, |
|
examples=[ |
|
["サマリーを作る男の人,サマリーマン。"], |
|
["やばい場所にクリティカルな配線ができてしまったので掲示した。"], |
|
["にゃん"], |
|
["Wikipedia の情報は入っているのかもしれない"], |
|
], |
|
description=DESCRIPTION, |
|
css_paths="style.css", |
|
fill_height=True, |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|