Spaces:
Runtime error
Runtime error
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# | |
# This work is made available under the Nvidia Source Code License-NC. | |
# To view a copy of this license, check out LICENSE.md | |
import torch | |
from torch import nn | |
class ApplyNoise(nn.Module): | |
r"""Add Gaussian noise to the input tensor.""" | |
def __init__(self): | |
super().__init__() | |
# scale of the noise | |
self.scale = nn.Parameter(torch.zeros(1)) | |
self.conditional = True | |
def forward(self, x, *_args, noise=None, **_kwargs): | |
r""" | |
Args: | |
x (tensor): Input tensor. | |
noise (tensor, optional, default=``None``) : Noise tensor to be | |
added to the input. | |
""" | |
if noise is None: | |
sz = x.size() | |
noise = x.new_empty(sz[0], 1, *sz[2:]).normal_() | |
return x + self.scale * noise | |
class PartialSequential(nn.Sequential): | |
r"""Sequential block for partial convolutions.""" | |
def __init__(self, *modules): | |
super(PartialSequential, self).__init__(*modules) | |
def forward(self, x): | |
r""" | |
Args: | |
x (tensor): Input tensor. | |
""" | |
act = x[:, :-1] | |
mask = x[:, -1].unsqueeze(1) | |
for module in self: | |
act, mask = module(act, mask_in=mask) | |
return act | |
class ConstantInput(nn.Module): | |
def __init__(self, channel, size=4): | |
super().__init__() | |
if isinstance(size, int): | |
h, w = size, size | |
else: | |
h, w = size | |
self.input = nn.Parameter(torch.randn(1, channel, h, w)) | |
def forward(self): | |
return self.input | |