File size: 26,380 Bytes
f670afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
import os
import torch
from abc import ABC, abstractmethod
import wandb
import options
import utils
from pytorch_msssim import ssim, SSIM
import numpy as np
import torchvision
from tqdm import tqdm
import lpips
from imaginaire.losses import FeatureMatchingLoss, GaussianKLLoss, PerceptualLoss,GANLoss
import cv2
from imaginaire.utils.trainer import get_scheduler
from .geometry_transform import render_sat
from model import geometry_transform
import csv



class BaseModel(ABC):
    """This class is an abstract base class (ABC) for models.
    To create a subclass, you need to implement the following five functions:
        -- <__init__>:                      initialize the class; first call BaseModel.__init__(self, opt).
        -- <set_input>:                     unpack data from dataset and apply preprocessing.
        -- <forward>:                       produce intermediate results.
        -- <optimize_parameters>:           calculate losses, gradients, and update network weights.
        -- <modify_commandline_options>:    (optionally) add model-specific options and set default options.
    """

    def __init__(self, opt,wandb=None):
        """Initialize the BaseModel class.
        Parameters:
            opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions
        When creating your custom class, you need to implement your own initialization.
        In this function, you should first call <BaseModel.__init__(self, opt)>
        Then, you need to define four lists:
            -- self.loss_names (str list):          specify the training losses that you want to plot and save.
            -- self.model_names (str list):         define networks used in our training.
        """
        self.wandb = wandb
        if opt.isTrain:
            opt.save_dir =wandb.dir
            options.save_options_file(opt,opt.save_dir)
        self.opt = opt
        self.device = "cpu" if opt.cpu or not torch.cuda.is_available() else "cuda:{}".format(opt.gpu)
        # torch.backends.cudnn.benchmark = True
        self.model_names = []
        self.train_loader = None
        self.val_loader = None 
        self.sty_loader = None
        self.loss_fn_alex = lpips.LPIPS(net='alex',eval_mode=True).cuda()
        if opt.task=='test':
            self.loss_fn_sque = lpips.LPIPS(net='squeeze',eval_mode=True).cuda()
        self.mseloss = torch.nn.MSELoss(True,True)
        self.criteria = {}
        self.weights = {}
        if hasattr(opt.optim.loss_weight, 'GaussianKL'):
            if opt.optim.loss_weight.GaussianKL:
                self.criteria['GaussianKL'] = GaussianKLLoss()
                self.weights['GaussianKL'] = opt.optim.loss_weight.GaussianKL
        if hasattr(opt.optim.loss_weight, 'L1'):
            if opt.optim.loss_weight.L1:
                self.criteria['L1']  = torch.nn.L1Loss(True,True)
                self.weights['L1'] = opt.optim.loss_weight.L1
        if hasattr(opt.optim.loss_weight, 'L2'):
            if opt.optim.loss_weight.L2: 
                self.criteria['L2'] = torch.nn.MSELoss(True,True)
                self.weights['L2'] = opt.optim.loss_weight.L2
        if hasattr(opt.optim.loss_weight, 'SSIM'):
            if opt.optim.loss_weight.SSIM: 
                self.criteria['SSIM'] = SSIM(data_range =1., size_average=True, channel=3)
                self.weights['SSIM']  = opt.optim.loss_weight.SSIM
        if hasattr(opt.optim.loss_weight, 'Perceptual'):
            if opt.optim.loss_weight.Perceptual: 
                self.criteria['Perceptual'] = \
                    PerceptualLoss(
                        network=opt.optim.perceptual_loss.mode,
                        layers=opt.optim.perceptual_loss.layers,
                        weights=opt.optim.perceptual_loss.weights).to(self.device)
                self.weights['Perceptual'] = opt.optim.loss_weight.Perceptual
        if hasattr(opt.optim.loss_weight, 'sky_inner'):
            if opt.optim.loss_weight.sky_inner:
                self.criteria['sky_inner'] = torch.nn.L1Loss(True,True)
                self.weights['sky_inner'] = opt.optim.loss_weight.sky_inner
        if hasattr(opt.optim.loss_weight, 'feature_matching'):
            if opt.optim.loss_weight.feature_matching:
                self.criteria['feature_matching'] = FeatureMatchingLoss()
                self.weights['feature_matching'] = opt.optim.loss_weight.feature_matching
        self.weights['GAN'] = opt.optim.loss_weight.GAN
        self.criteria['GAN'] = GANLoss(gan_mode=opt.optim.gan_mode)


    @staticmethod
    def modify_commandline_options(parser, is_train):
        """Add new model-specific options, and rewrite default values for existing options.
        Parameters:
            parser          -- original option parser
            is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options.
        Returns:
            the modified parser.
        """
        return parser

    @abstractmethod
    def set_input(self, input):
        """Unpack input data from the dataloader and perform necessary pre-processing steps.
        Parameters:
            input (dict): includes the data itself and its metadata information.
        """
        pass

    @abstractmethod
    def forward(self):
        """Run forward pass; called by both functions <optimize_parameters> and <test>."""
        pass

    def save_checkpoint(self,ep=0,latest=False):
        """
        save trained models.
        Args:
            ep (int, optional): model epochs. Defaults to 0.
            latest (bool, optional): qhether it is the latest model. Defaults to False.
        """        
        ckpt_save_path = os.path.join(self.wandb.dir,'checkpoint')
        if not os.path.exists(ckpt_save_path):
            os.mkdir(ckpt_save_path)
        utils.save_checkpoint(self,ep=ep,latest=latest,output_path=ckpt_save_path)
        if not latest:
            print("checkpoint saved: {0}, epoch {1} ".format(self.opt.name,ep))



    def __patch_instance_norm_state_dict(self, state_dict, module, keys, i=0):
        """Fix InstanceNorm checkpoints incompatibility (prior to 0.4)"""
        key = keys[i]
        if i + 1 == len(keys):  # at the end, pointing to a parameter/buffer
            if module.__class__.__name__.startswith('InstanceNorm') and \
                    (key == 'running_mean' or key == 'running_var'):
                if getattr(module, key) is None:
                    state_dict.pop('.'.join(keys))
            if module.__class__.__name__.startswith('InstanceNorm') and \
               (key == 'num_batches_tracked'):
                state_dict.pop('.'.join(keys))
        else:
            self.__patch_instance_norm_state_dict(state_dict, getattr(module, key), keys, i + 1)


    def setup_optimizer(self,opt):
        # initialize optimizers; schedulers will be automatically created by function <BaseModel.setup>.
        self.optimizer_G = torch.optim.Adam(self.netG.parameters(), lr=opt.optim.lr_gen, betas=(opt.optim.beta1, 0.999),eps=1.e-7)
        if opt.isTrain:
            self.optimizer_D = torch.optim.Adam(self.netD.parameters(), lr=opt.optim.lr_dis, betas=(opt.optim.beta1, 0.999))
        if opt.optim.lr_policy:
            self.sch_G = get_scheduler(opt.optim, self.optimizer_G)
            self.sch_D = get_scheduler(opt.optim, self.optimizer_D)

    def optimize_parameters(self,opt):
        self.netG.train()
        # update Discriminators
        self.backward_D(opt)                # calculate gradients for D

        # update Generator
        self.backward_G(opt)                   # calculate graidents for G

        psnr1 = -10*self.mseloss(self.fake_B.detach(),self.real_B.detach()).log10().item()
        ssim_ = ssim(self.real_B.detach().float(), self.fake_B.detach().float(),data_range=1.)

        out_dict = {
                        "train_ssim": ssim_,
                        "train_psnr1": psnr1,
                    }
        # adjust learning rates according to schedule 
        if opt.optim.lr_policy:
            out_dict["lr_D"]=self.sch_D.get_lr()[0]
            out_dict["lr_G"]=self.sch_G.get_lr()[0]
        out_dict.update(self.loss)
        out_dict.update(self.dis_losses)
        self.wandb.log(out_dict)

    def validation(self,opt):
        """Used for validation and test in Center Ground-View Synthesis setting

        Args:
            opt (_type_): option dict
        """        
        print(10*"*","validate",10*"*")
        self.netG.eval()
        # six image reconstruction metrics
        psnr_val = []
        ssim_val = []
        lpips_ale_val = []
        lpips_squ_val = []
        rmse_val = []
        sd_val = []
        with torch.no_grad():
            # set the sky of all images with predefined sky histogram.
            if opt.sty_img:
                for _,data in enumerate(self.sty_loader):
                    self.set_input(data)
                    self.style_temp=self.sky_histc
                    break

            for _,data in enumerate(tqdm(self.val_loader,ncols=100)):
                self.set_input(data)
                # if true: use the sky of predefined image
                # if false: use the sky of corresponding GT
                if opt.sty_img:
                    self.sky_histc = self.style_temp
                
                self.forward(opt)
                rmse = torch.sqrt(self.mseloss(self.fake_B*255.,self.real_B*255.)).item()
                sd = sd_func(self.real_B,self.fake_B)
                rmse_val.append(rmse)
                sd_val.append(sd)

                psnr1 = -10*self.mseloss(self.fake_B,self.real_B).log10().item()
                ssim_ = ssim(self.real_B, self.fake_B,data_range=1.).item()
                lpips_ale = torch.mean(self.loss_fn_alex((self.real_B*2.)-1, (2.*self.fake_B)-1)).cpu()
                if opt.task=='test':
                    lpips_sque = torch.mean(self.loss_fn_sque((self.real_B*2.)-1, (2.*self.fake_B)-1)).cpu()
                    lpips_squ_val.append(lpips_sque)
                psnr_val.append(psnr1)
                ssim_val.append(ssim_)
                lpips_ale_val.append(lpips_ale)
                    
                if opt.task in ['vis_test']:
                    if not os.path.exists(opt.vis_dir):
                        os.mkdir(opt.vis_dir)

                    sat_opacity,sat_depth = render_sat(opt,self.out_put['voxel'])

                    self.out_put['depth'] = (self.out_put['depth']/self.out_put['depth'].max())*255.
                    sat_depth = (sat_depth/sat_depth.max())*255.
                    for i in range(len(self.fake_B)):
                        depth_save  = cv2.applyColorMap(self.out_put['depth'][i].squeeze().cpu().numpy().astype(np.uint8), cv2.COLORMAP_TURBO)
                        depth_sat_save = cv2.applyColorMap(sat_depth[i].squeeze().cpu().numpy().astype(np.uint8), cv2.COLORMAP_TURBO)
                        # cat generated ground images, GT ground images, predicted ground depth
                        torchvision.utils.save_image([self.fake_B[i].cpu(),self.real_B[i].cpu(),torch.flip(torch.from_numpy(depth_save).permute(2,0,1)/255.,[0])],os.path.join(opt.vis_dir,os.path.basename(self.image_paths[i])))
                        # cat GT satellite images, predicted satellite depth
                        torchvision.utils.save_image( [self.real_A[i].cpu() ,torch.flip(torch.from_numpy(depth_sat_save).permute(2,0,1)/255.,[0])],os.path.join(opt.vis_dir,os.path.basename(self.image_paths[i]).rsplit('.', 1)[0]+'_sat.jpg'))
                        # ground opacity
                        torchvision.utils.save_image([self.out_put['opacity'][i]] ,os.path.join(opt.vis_dir,os.path.basename(self.image_paths[i]).rsplit('.', 1)[0]+'_sat.jpg'))
        psnr_avg = np.average(psnr_val)
        ssim_avg = np.average(ssim_val)

        lpips_ale_avg = np.average(lpips_ale_val)
        if 'test' in opt.task:
            lpips_squ_avg = np.average(lpips_squ_val)

        rmse_avg = np.average(rmse_val)
        sd_avg = np.average(sd_val)
        if opt.task in ["train" , "Train"]:
            out_dict =   {
                            'val_psnr': psnr_avg,
                            'val_ssim': ssim_avg,
                            'val_lpips_ale':lpips_ale_avg,
                            'val_rmse':rmse_avg,
                            'val_sd':sd_avg
                            }  
            if opt.task=='test':
                out_dict['val_lpips_squ'] =  lpips_squ_avg          
            self.wandb.log(out_dict,commit=False)
        else:
            print(
                {
                'val_rmse':rmse_avg,
                'val_ssim': ssim_avg,
                'val_psnr': psnr_avg,
                'val_sd':sd_avg,
                'val_lpips_ale':lpips_ale_avg,
                'val_lpips_squ':lpips_squ_avg,
                }
                )
            with open('test_output.csv', mode='a', newline='') as csv_file:
                writer = csv.writer(csv_file)
                writer.writerow([rmse_avg, ssim_avg, psnr_avg, sd_avg, lpips_ale_avg, lpips_squ_avg])
                
    def test_vid(self,opt):
        """Used for synthesis ground video

        Args:
            opt (_type_): option dict
        """        
        ckpt_list = os.listdir('wandb/')
        for i in ckpt_list:
            if opt.test_ckpt_path in i:
                ckpt_path = i
        
        ckpt = torch.load(os.path.join('wandb/',ckpt_path,'files/checkpoint/model.pth'))['netG']
        print('load success!')
        self.netG.load_state_dict(ckpt,strict=True)
        self.netG.eval()
        print(10*"*","test_video",10*"*")


        pixels = []
        if os.path.exists('vis_video/pixels.csv'):

            with open('vis_video/pixels.csv', 'r') as csvfile:
                reader = csv.DictReader(csvfile)
                for row in reader:
                    x = float(row['x']) #x is 
                    y = float(row['y'])
                    pixels.append((x, y))
        else:
            print('only render center point without vis_video/pixels.csv')
            pixels = [(128,128)]

        if opt.sty_img:
            # inference with illumination from other images
            for idx,data in enumerate(self.sty_loader):
                self.set_input(data)
                self.style_temp=self.sky_histc
                break
        with torch.no_grad():
            for idx,data in enumerate(self.val_loader):
                self.set_input(data)
                if opt.sty_img:
                    self.sky_histc = self.style_temp
                for i,(x,y) in enumerate(pixels):
                    opt.origin_H_W = [(y-128)/128 , (x-128)/128]
                    print(opt.origin_H_W)
                    self.forward(opt)



                    if not os.path.exists('vis_video'):
                        os.mkdir('vis_video')

                    # save voxel to visalize & satellite depth, works well on cvact
                    if i==0:
                        # pre-process for better visualize
                        volume_data = self.out_put.voxel.squeeze().cpu().numpy().transpose((1,2,0))
                        volume_data = np.clip(volume_data, None, 10)

                        import pyvista as pv

                        grid = pv.UniformGrid()
                        grid.dimensions = volume_data.shape
                        grid.spacing = (1, 1, 1)
                        grid.origin = (0, 0, 0)
                        grid.point_data['values'] = volume_data.flatten(order='F')
                        grid.save(os.path.join('vis_video',"volume_data.vtk") ) # vtk file could be visualized by ParaView app

                        sat_opacity,sat_depth = render_sat(opt,self.out_put['voxel'])
                        sat_depth = (2 - sat_depth)/(opt.data.max_height/15)*255.
                        depth_sat_save = cv2.applyColorMap(sat_depth[0].squeeze().cpu().numpy().astype(np.uint8), cv2.COLORMAP_TURBO)
                        torchvision.utils.save_image(torch.flip(torch.from_numpy(depth_sat_save).permute(2,0,1)/255.,[0]) ,os.path.join('vis_video',os.path.basename(self.image_paths[0])).replace('.png','_satdepth.png'))
                        torchvision.utils.save_image( [self.real_A[0].cpu() ]                      ,os.path.join('vis_video',os.path.basename(self.image_paths[0]).replace('.png','_sat.png')))
                        torchvision.utils.save_image( [self.real_B[0].cpu() ]                      ,os.path.join('vis_video',os.path.basename(self.image_paths[0]).replace('.png','_pano.png')))
                        
                    self.out_put['depth'] = (self.out_put['depth']/self.out_put['depth'].max())*255.
                    depth_save  = cv2.applyColorMap(self.out_put['depth'][0].squeeze().cpu().numpy().astype(np.uint8), cv2.COLORMAP_TURBO)
                    depth_save = torch.flip(torch.from_numpy(depth_save).permute(2,0,1)/255.,[0])

                    
                    save_img = self.out_put.pred[0].cpu()
                    name = '%05d' % int(i) + ".png"
                    torchvision.utils.save_image(save_img,os.path.join('vis_video',os.path.basename(self.image_paths[0])).replace('.png',name))

                    save_img = depth_save
                    name = '%05d' % int(i) + "_depth.png"
                    torchvision.utils.save_image(save_img,os.path.join('vis_video',os.path.basename(self.image_paths[0])).replace('.png',name))

                    # save_img = self.out_put.generator_inputs[0][:3,:,:]
                    # name = '%05d' % int(i) + "_color_project.png"
                    # torchvision.utils.save_image(save_img,os.path.join('vis_video',os.path.basename(self.image_paths[0])).replace('.png',name))

    def test_interpolation(self,opt):
        """Used for test interpolation

        Args:
            opt (_type_): option dict
        """        
        ckpt_list = os.listdir('wandb/')
        for i in ckpt_list:
            if opt.test_ckpt_path in i:
                ckpt_path = i
        
        ckpt = torch.load(os.path.join('wandb/',ckpt_path,'files/checkpoint/model.pth'))['netG']
        print('load success!')
        self.netG.load_state_dict(ckpt,strict=True)
        self.netG.eval()

        pixels = [(128,128)]
        if opt.sty_img1:
            for idx,data in enumerate(self.sty_loader1):
                self.set_input(data)
                self.style_temp1=self.sky_histc
                break
        if opt.sty_img2:
            for idx,data in enumerate(self.sty_loader2):
                self.set_input(data)
                self.style_temp2=self.sky_histc
                break
        
        with torch.no_grad():
            for idx,data in enumerate(self.val_loader):
                self.set_input(data)
                self.sky_histc1 = self.style_temp1
                self.sky_histc2 = self.style_temp2
                x,y =  pixels[0]
                opt.origin_H_W = [(y-128)/128 , (x-128)/128]
                print(opt.origin_H_W)
                    

                estimated_height = self.netG.depth_model(self.real_A)
                geo_outputs = geometry_transform.render(opt,self.real_A,estimated_height,self.netG.pano_direction,PE=self.netG.PE)
                generator_inputs,opacity,depth = geo_outputs['rgb'],geo_outputs['opacity'],geo_outputs['depth']
                if self.netG.gen_cfg.cat_opa:
                    generator_inputs = torch.cat((generator_inputs,opacity),dim=1)
                if self.netG.gen_cfg.cat_depth:
                    generator_inputs = torch.cat((generator_inputs,depth),dim=1)
                _, _, z1 = self.netG.style_encode(self.sky_histc1)
                _, _, z2 = self.netG.style_encode(self.sky_histc2)
                num_inter = 60
                for i in range(num_inter):
                    z = z1 * (1-i/(num_inter-1)) + z2* (i/(num_inter-1))
                    z = self.netG.style_model(z)
                    output_RGB = self.netG.denoise_model(generator_inputs,z)

                    save_img = output_RGB.cpu()
                    name = 'img{:03d}.png'.format(i)
                    if not os.path.exists('vis_interpolation'):
                        os.mkdir('vis_interpolation')
                    torchvision.utils.save_image(save_img,os.path.join('vis_interpolation',name))



                        
                  

    def test_speed(self,opt):
        self.netG.eval()
        random_input = torch.randn(1, 3, 256, 256).to(opt.device)
        starter, ender = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)
        iterations  = 300

        times = torch.zeros(iterations)
        with torch.no_grad():
            for _ in range(50):
                _ = self.netG(random_input,None,opt)
            for iter in range(iterations):
                starter.record()
                _ = self.netG(random_input,None,opt)
                ender.record()
                torch.cuda.synchronize() 
                curr_time = starter.elapsed_time(ender) # 计算时间
                times[iter] = curr_time
        # print(curr_time)

        mean_time = times.mean().item()
        print("Inference time: {:.6f}, FPS: {} ".format(mean_time, 1000/mean_time))


    def test_sty(self,opt):
        ckpt_list = os.listdir('wandb/')
        for i in ckpt_list:
            if opt.test_ckpt_path in i:
                ckpt_path = i
        
        ckpt = torch.load(os.path.join('wandb/',ckpt_path,'files/checkpoint/model.pth'))['netG']
        print('load success!')
        self.netG.load_state_dict(ckpt,strict=True)
        self.netG.eval()
        print(10*"*","test_sty",10*"*")
        self.netG.eval()
        self.style_temp_list = []
        with torch.no_grad():
            num_val_loader = len(self.val_loader)
            for i in range(num_val_loader):
                for idx,data in enumerate(tqdm(self.val_loader,ncols=100)):
                    self.set_input(data)
                    
                    if i==0:
                        self.style_temp_list.append(self.sky_histc)
                        name = '%05d' % int(idx)
                        torchvision.utils.save_image( [self.real_A[0].cpu() ]  ,os.path.join(opt.vis_dir,os.path.basename(self.image_paths[0]).replace('.png',name+'_sat.png')))
                    self.sky_histc = self.style_temp_list[i]
                    self.forward(opt)
                    if not os.path.exists(opt.vis_dir):
                        os.mkdir(opt.vis_dir)
                    name = '%05d' % int(idx)+'_'+'%05d' % int(i)
                    name= name+ '.png'
                    torchvision.utils.save_image(self.fake_B[0].cpu(),os.path.join(opt.vis_dir, name))

    def train(self,opt):
        self.validation(opt)
        for current_epoch in range(opt.max_epochs):
            print(10*'-','current epoch is ',current_epoch,10*'-')
            for idx,data in enumerate(tqdm(self.train_loader,ncols=100)):
                self.set_input(data)
                self.optimize_parameters(opt)
                if idx%500==0 :
                    out_ing_dict = {
                                    'train_input': wandb.Image(self.real_A[0].float()),
                                    'train_pred_and_gt': wandb.Image(torch.cat([self.fake_B,self.real_B],2)[0].float()),
                                    }
                    if hasattr(self.out_put, 'inter_RGB'):
                        out_ing_dict["train_inner_pred"] = wandb.Image(self.out_put.inter_RGB[0].float())
                    if opt.arch.gen.transform_mode in ['volum_rendering']:
                        out_ing_dict['train_inner_opacity'] = wandb.Image(self.out_put.opacity[0].float())
                    self.wandb.log(out_ing_dict,commit=False)
                if  opt.optim.lr_policy.iteration_mode:
                    self.sch_G.step()
                    self.sch_D.step()
            if not opt.optim.lr_policy.iteration_mode:
                self.sch_G.step()
                self.sch_D.step()
            self.validation(opt)
            if current_epoch%5==0:
                self.save_checkpoint(ep=current_epoch)
        self.save_checkpoint(ep=current_epoch)

    def test(self,opt):
        ckpt_list = os.listdir('wandb/')
        for i in ckpt_list:
            if '.zip' not in i:
                if opt.test_ckpt_path in i:
                    ckpt_path = i
        
        ckpt = torch.load(os.path.join('wandb/',ckpt_path,'files/checkpoint/model.pth'))['netG']
        print('load success!')
        self.netG.load_state_dict(ckpt,strict=True)
        # print(10*"*","validate",10*"*")
        self.validation(opt)
        print('if --task=vis_test,visible results will be saved,you can add "--vis_dir=xxx" to save in other dictionary',opt.vis_dir)


    def _get_outputs(self, net_D_output, real=True):
        r"""Return output values. Note that when the gan mode is relativistic.
        It will do the difference before returning.

        Args:
           net_D_output (dict):
               real_outputs (tensor): Real output values.
               fake_outputs (tensor): Fake output values.
           real (bool): Return real or fake.
        """

        def _get_difference(a, b):
            r"""Get difference between two lists of tensors or two tensors.

            Args:
                a: list of tensors or tensor
                b: list of tensors or tensor
            """
            out = list()
            for x, y in zip(a, b):
                if isinstance(x, list):
                    res = _get_difference(x, y)
                else:
                    res = x - y
                out.append(res)
            return out

        if real:
            return net_D_output['real_outputs']
        else:
            return net_D_output['fake_outputs']


def sd_func(real, fake):
    '''
    ref: page 6 in https://arxiv.org/abs/1511.05440
    '''
    dgt1 = torch.abs(torch.diff(real,dim=-2))[:, :, 1:, 1:-1]
    dgt2 = torch.abs(torch.diff(real, dim=-1))[:, :, 1:-1, 1:]
    dpred1 = torch.abs(torch.diff(fake, dim=-2))[:, :, 1:, 1:-1]
    dpred2 = torch.abs(torch.diff(fake, dim=-1))[:, :, 1:-1, 1:]
    return 10*torch.log10(1.**2/torch.mean(torch.abs(dgt1+dgt2-dpred1-dpred2))).cpu().item()