File size: 39,922 Bytes
f670afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md
import os

from torch.cuda.amp import autocast
import imageio
import numpy as np
import torch
from tqdm import tqdm

from imaginaire.evaluation.fid import compute_fid
from imaginaire.losses import (FeatureMatchingLoss, FlowLoss, GANLoss,
                               PerceptualLoss)
from imaginaire.model_utils.fs_vid2vid import (concat_frames, detach,
                                               get_fg_mask,
                                               pre_process_densepose, resample)
from imaginaire.trainers.base import BaseTrainer
from imaginaire.utils.distributed import is_master
from imaginaire.utils.distributed import master_only_print as print
from imaginaire.utils.misc import get_nested_attr, split_labels, to_cuda
from imaginaire.utils.visualization import (tensor2flow, tensor2im, tensor2label)
from imaginaire.utils.visualization.pose import tensor2pose


class Trainer(BaseTrainer):
    r"""Initialize vid2vid trainer.

    Args:
        cfg (obj): Global configuration.
        net_G (obj): Generator network.
        net_D (obj): Discriminator network.
        opt_G (obj): Optimizer for the generator network.
        opt_D (obj): Optimizer for the discriminator network.
        sch_G (obj): Scheduler for the generator optimizer.
        sch_D (obj): Scheduler for the discriminator optimizer.
        train_data_loader (obj): Train data loader.
        val_data_loader (obj): Validation data loader.
    """

    def __init__(self, cfg, net_G, net_D, opt_G, opt_D, sch_G, sch_D,
                 train_data_loader, val_data_loader):
        super(Trainer, self).__init__(cfg, net_G, net_D, opt_G,
                                      opt_D, sch_G, sch_D,
                                      train_data_loader, val_data_loader)
        # Below is for testing setting, the FID computation during training
        # is just for getting a quick idea of the performance. It does not
        # equal to the final performance evaluation.
        # Below, we will determine how many videos that we want to do
        # evaluation, and the length of each video.
        # It is better to keep the number of videos to be multiple of 8 so
        # that all the GPUs in a node will contribute equally to the
        # evaluation. None of them is idol.
        self.sample_size = (
            getattr(cfg.trainer, 'num_videos_to_test', 64),
            getattr(cfg.trainer, 'num_frames_per_video', 10)
        )

        self.sequence_length = 1
        if not self.is_inference:
            self.train_dataset = self.train_data_loader.dataset
            self.sequence_length_max = \
                min(getattr(cfg.data.train, 'max_sequence_length', 100),
                    self.train_dataset.sequence_length_max)
        self.Tensor = torch.cuda.FloatTensor
        self.has_fg = getattr(cfg.data, 'has_foreground', False)

        self.net_G_output = self.data_prev = None
        self.net_G_module = self.net_G.module
        if self.cfg.trainer.model_average_config.enabled:
            self.net_G_module = self.net_G_module.module

    def _assign_criteria(self, name, criterion, weight):
        r"""Assign training loss terms.

        Args:
            name (str): Loss name
            criterion (obj): Loss object.
            weight (float): Loss weight. It should be non-negative.
        """
        self.criteria[name] = criterion
        self.weights[name] = weight

    def _init_loss(self, cfg):
        r"""Initialize training loss terms. In vid2vid, in addition to
        the GAN loss, feature matching loss, and perceptual loss used in
        pix2pixHD, we also add temporal GAN (and feature matching) loss,
        and flow warping loss. Optionally, we can also add an additional
        face discriminator for the face region.

        Args:
            cfg (obj): Global configuration.
        """
        self.criteria = dict()
        self.weights = dict()
        trainer_cfg = cfg.trainer
        loss_weight = cfg.trainer.loss_weight

        # GAN loss and feature matching loss.
        self._assign_criteria('GAN',
                              GANLoss(trainer_cfg.gan_mode),
                              loss_weight.gan)
        self._assign_criteria('FeatureMatching',
                              FeatureMatchingLoss(),
                              loss_weight.feature_matching)

        # Perceptual loss.
        perceptual_loss = cfg.trainer.perceptual_loss
        self._assign_criteria('Perceptual',
                              PerceptualLoss(
                                  network=perceptual_loss.mode,
                                  layers=perceptual_loss.layers,
                                  weights=perceptual_loss.weights,
                                  num_scales=getattr(perceptual_loss,
                                                     'num_scales', 1)),
                              loss_weight.perceptual)

        # L1 Loss.
        if getattr(loss_weight, 'L1', 0) > 0:
            self._assign_criteria('L1', torch.nn.L1Loss(), loss_weight.L1)

        # Whether to add an additional discriminator for specific regions.
        self.add_dis_cfg = getattr(self.cfg.dis, 'additional_discriminators',
                                   None)
        if self.add_dis_cfg is not None:
            for name in self.add_dis_cfg:
                add_dis_cfg = self.add_dis_cfg[name]
                self.weights['GAN_' + name] = add_dis_cfg.loss_weight
                self.weights['FeatureMatching_' + name] = \
                    loss_weight.feature_matching

        # Temporal GAN loss.
        self.num_temporal_scales = get_nested_attr(self.cfg.dis,
                                                   'temporal.num_scales', 0)
        for s in range(self.num_temporal_scales):
            self.weights['GAN_T%d' % s] = loss_weight.temporal_gan
            self.weights['FeatureMatching_T%d' % s] = \
                loss_weight.feature_matching

        # Flow loss. It consists of three parts: L1 loss compared to GT,
        # warping loss when used to warp images, and loss on the occlusion mask.
        self.use_flow = hasattr(cfg.gen, 'flow')
        if self.use_flow:
            self.criteria['Flow'] = FlowLoss(cfg)
            self.weights['Flow'] = self.weights['Flow_L1'] = \
                self.weights['Flow_Warp'] = \
                self.weights['Flow_Mask'] = loss_weight.flow

        # Other custom losses.
        self._define_custom_losses()

    def _define_custom_losses(self):
        r"""All other custom losses are defined here."""
        pass

    def _start_of_epoch(self, current_epoch):
        r"""Things to do before an epoch. When current_epoch is smaller than
        $(single_frame_epoch), we only train a single frame and the generator is
        just an image generator. After that, we start doing temporal training
        and train multiple frames. We will double the number of training frames
        every $(num_epochs_temporal_step) epochs.

        Args:
            current_epoch (int): Current number of epoch.
        """
        cfg = self.cfg
        # Only generates one frame at the beginning of training
        if current_epoch < cfg.single_frame_epoch:
            self.train_dataset.sequence_length = 1
        # Then add the temporal network to generator, and train multiple frames.
        elif current_epoch == cfg.single_frame_epoch:
            self.init_temporal_network()

        # Double the length of training sequence every few epochs.
        temp_epoch = current_epoch - cfg.single_frame_epoch
        if temp_epoch > 0:
            sequence_length = \
                cfg.data.train.initial_sequence_length * \
                (2 ** (temp_epoch // cfg.num_epochs_temporal_step))
            sequence_length = min(sequence_length, self.sequence_length_max)
            if sequence_length > self.sequence_length:
                self.sequence_length = sequence_length
                self.train_dataset.set_sequence_length(sequence_length)
                print('------- Updating sequence length to %d -------' %
                      sequence_length)

    def init_temporal_network(self):
        r"""Initialize temporal training when beginning to train multiple
        frames. Set the sequence length to $(initial_sequence_length).
        """
        self.tensorboard_init = False
        # Update training sequence length.
        self.sequence_length = self.cfg.data.train.initial_sequence_length
        if not self.is_inference:
            self.train_dataset.set_sequence_length(self.sequence_length)
            print('------ Now start training %d frames -------' %
                  self.sequence_length)

    def _start_of_iteration(self, data, current_iteration):
        r"""Things to do before an iteration.

        Args:
            data (dict): Data used for the current iteration.
            current_iteration (int): Current number of iteration.
        """
        data = self.pre_process(data)
        return to_cuda(data)

    def pre_process(self, data):
        r"""Do any data pre-processing here.

        Args:
            data (dict): Data used for the current iteration.
        """
        data_cfg = self.cfg.data
        if hasattr(data_cfg, 'for_pose_dataset') and \
                ('pose_maps-densepose' in data_cfg.input_labels):
            pose_cfg = data_cfg.for_pose_dataset
            data['label'] = pre_process_densepose(pose_cfg, data['label'],
                                                  self.is_inference)
        return data

    def post_process(self, data, net_G_output):
        r"""Do any postprocessing of the data / output here.

        Args:
            data (dict): Training data at the current iteration.
            net_G_output (dict): Output of the generator.
        """
        return data, net_G_output

    def gen_update(self, data):
        r"""Update the vid2vid generator. We update in the fashion of
        dis_update (frame 1), gen_update (frame 1),
        dis_update (frame 2), gen_update (frame 2), ... in each iteration.

        Args:
            data (dict): Training data at the current iteration.
        """
        # Whether to reuse generator output for both gen_update and
        # dis_update. It saves time but consumes a bit more memory.
        reuse_gen_output = getattr(self.cfg.trainer, 'reuse_gen_output', True)

        past_frames = [None, None]
        net_G_output = None
        data_prev = None
        for t in range(self.sequence_length):
            data_t = self.get_data_t(data, net_G_output, data_prev, t)
            data_prev = data_t

            # Discriminator update.
            if reuse_gen_output:
                net_G_output = self.net_G(data_t)
            else:
                with torch.no_grad():
                    net_G_output = self.net_G(data_t)
            data_t, net_G_output = self.post_process(data_t, net_G_output)

            # Get losses and update D if image generated by network in training.
            if 'fake_images_source' not in net_G_output:
                net_G_output['fake_images_source'] = 'in_training'
            if net_G_output['fake_images_source'] != 'pretrained':
                net_D_output, _ = self.net_D(data_t, detach(net_G_output), past_frames)
                self.get_dis_losses(net_D_output)

            # Generator update.
            if not reuse_gen_output:
                net_G_output = self.net_G(data_t)
                data_t, net_G_output = self.post_process(data_t, net_G_output)

            # Get losses and update G if image generated by network in training.
            if 'fake_images_source' not in net_G_output:
                net_G_output['fake_images_source'] = 'in_training'
            if net_G_output['fake_images_source'] != 'pretrained':
                net_D_output, past_frames = \
                    self.net_D(data_t, net_G_output, past_frames)
                self.get_gen_losses(data_t, net_G_output, net_D_output)

            # update average
            if self.cfg.trainer.model_average_config.enabled:
                self.net_G.module.update_average()

    def dis_update(self, data):
        r"""The update is already done in gen_update.

        Args:
            data (dict): Training data at the current iteration.
        """
        pass

    def reset(self):
        r"""Reset the trainer (for inference) at the beginning of a sequence.
        """
        # print('Resetting trainer.')
        self.net_G_output = self.data_prev = None
        self.t = 0

        self.test_in_model_average_mode = getattr(
            self, 'test_in_model_average_mode', self.cfg.trainer.model_average_config.enabled)
        if self.test_in_model_average_mode:
            net_G_module = self.net_G.module.averaged_model
        else:
            net_G_module = self.net_G.module
        if hasattr(net_G_module, 'reset'):
            net_G_module.reset()

    def create_sequence_output_dir(self, output_dir, key):
        r"""Create output subdir for this sequence.

        Args:
            output_dir (str): Root output dir.
            key (str): LMDB key which contains sequence name and file name.
        Returns:
            output_dir (str): Output subdir for this sequence.
            seq_name (str): Name of this sequence.
        """
        seq_dir = '/'.join(key.split('/')[:-1])
        output_dir = os.path.join(output_dir, seq_dir)
        os.makedirs(output_dir, exist_ok=True)
        seq_name = seq_dir.replace('/', '-')
        return output_dir, seq_name

    def test(self, test_data_loader, root_output_dir, inference_args):
        r"""Run inference on all sequences.

        Args:
            test_data_loader (object): Test data loader.
            root_output_dir (str): Location to dump outputs.
            inference_args (optional): Optional args.
        """

        # Go over all sequences.
        loader = test_data_loader
        num_inference_sequences = loader.dataset.num_inference_sequences()
        for sequence_idx in range(num_inference_sequences):
            loader.dataset.set_inference_sequence_idx(sequence_idx)
            print('Seq id: %d, Seq length: %d' %
                  (sequence_idx + 1, len(loader)))

            # Reset model at start of new inference sequence.
            self.reset()
            self.sequence_length = len(loader)

            # Go over all frames of this sequence.
            video = []
            for idx, data in enumerate(tqdm(loader)):
                key = data['key']['images'][0][0]
                filename = key.split('/')[-1]

                # Create output dir for this sequence.
                if idx == 0:
                    output_dir, seq_name = \
                        self.create_sequence_output_dir(root_output_dir, key)
                    video_path = os.path.join(output_dir, '..', seq_name)

                # Get output and save images.
                data['img_name'] = filename
                data = self.start_of_iteration(data, current_iteration=-1)
                output = self.test_single(data, output_dir, inference_args)
                video.append(output)

            # Save output as mp4.
            imageio.mimsave(video_path + '.mp4', video, fps=15)

    def test_single(self, data, output_dir=None, inference_args=None):
        r"""The inference function. If output_dir exists, also save the
        output image.
        Args:
            data (dict): Training data at the current iteration.
            output_dir (str): Save image directory.
            inference_args (obj): Inference args.
        """
        if getattr(inference_args, 'finetune', False):
            if not getattr(self, 'has_finetuned', False):
                self.finetune(data, inference_args)

        net_G = self.net_G
        if self.test_in_model_average_mode:
            net_G = net_G.module.averaged_model
        net_G.eval()

        data_t = self.get_data_t(data, self.net_G_output, self.data_prev, 0)
        if self.is_inference or self.sequence_length > 1:
            self.data_prev = data_t

        # Generator forward.
        with torch.no_grad():
            self.net_G_output = net_G(data_t)

        if output_dir is None:
            return self.net_G_output

        save_fake_only = getattr(inference_args, 'save_fake_only', False)
        if save_fake_only:
            image_grid = tensor2im(self.net_G_output['fake_images'])[0]
        else:
            vis_images = self.get_test_output_images(data)
            image_grid = np.hstack([np.vstack(im) for im in
                                    vis_images if im is not None])
        if 'img_name' in data:
            save_name = data['img_name'].split('.')[0] + '.jpg'
        else:
            save_name = '%04d.jpg' % self.t
        output_filename = os.path.join(output_dir, save_name)
        os.makedirs(output_dir, exist_ok=True)
        imageio.imwrite(output_filename, image_grid)
        self.t += 1

        return image_grid

    def get_test_output_images(self, data):
        r"""Get the visualization output of test function.

        Args:
            data (dict): Training data at the current iteration.
        """
        vis_images = [
            self.visualize_label(data['label'][:, -1]),
            tensor2im(data['images'][:, -1]),
            tensor2im(self.net_G_output['fake_images']),
        ]
        return vis_images

    def gen_frames(self, data, use_model_average=False):
        r"""Generate a sequence of frames given a sequence of data.

        Args:
            data (dict): Training data at the current iteration.
            use_model_average (bool): Whether to use model average
                for update or not.
        """
        net_G_output = None  # Previous generator output.
        data_prev = None  # Previous data.
        if use_model_average:
            net_G = self.net_G.module.averaged_model
        else:
            net_G = self.net_G

        # Iterate through the length of sequence.
        all_info = {'inputs': [], 'outputs': []}
        for t in range(self.sequence_length):
            # Get the data at the current time frame.
            data_t = self.get_data_t(data, net_G_output, data_prev, t)
            data_prev = data_t

            # Generator forward.
            with torch.no_grad():
                net_G_output = net_G(data_t)

            # Do any postprocessing if necessary.
            data_t, net_G_output = self.post_process(data_t, net_G_output)

            if t == 0:
                # Get the output at beginning of sequence for visualization.
                first_net_G_output = net_G_output

            all_info['inputs'].append(data_t)
            all_info['outputs'].append(net_G_output)

        return first_net_G_output, net_G_output, all_info

    def get_gen_losses(self, data_t, net_G_output, net_D_output):
        r"""Compute generator losses.

        Args:
            data_t (dict): Training data at the current time t.
            net_G_output (dict): Output of the generator.
            net_D_output (dict): Output of the discriminator.
        """
        update_finished = False
        while not update_finished:
            with autocast(enabled=self.cfg.trainer.amp_config.enabled):
                # Individual frame GAN loss and feature matching loss.
                self.gen_losses['GAN'], self.gen_losses['FeatureMatching'] = \
                    self.compute_gan_losses(net_D_output['indv'],
                                            dis_update=False)

                # Perceptual loss.
                self.gen_losses['Perceptual'] = self.criteria['Perceptual'](
                    net_G_output['fake_images'], data_t['image'])

                # L1 loss.
                if getattr(self.cfg.trainer.loss_weight, 'L1', 0) > 0:
                    self.gen_losses['L1'] = self.criteria['L1'](
                        net_G_output['fake_images'], data_t['image'])

                # Raw (hallucinated) output image losses (GAN and perceptual).
                if 'raw' in net_D_output:
                    raw_GAN_losses = self.compute_gan_losses(
                        net_D_output['raw'], dis_update=False
                    )
                    fg_mask = get_fg_mask(data_t['label'], self.has_fg)
                    raw_perceptual_loss = self.criteria['Perceptual'](
                        net_G_output['fake_raw_images'] * fg_mask,
                        data_t['image'] * fg_mask)
                    self.gen_losses['GAN'] += raw_GAN_losses[0]
                    self.gen_losses['FeatureMatching'] += raw_GAN_losses[1]
                    self.gen_losses['Perceptual'] += raw_perceptual_loss

                # Additional discriminator losses.
                if self.add_dis_cfg is not None:
                    for name in self.add_dis_cfg:
                        (self.gen_losses['GAN_' + name],
                         self.gen_losses['FeatureMatching_' + name]) = \
                            self.compute_gan_losses(net_D_output[name],
                                                    dis_update=False)

                # Flow and mask loss.
                if self.use_flow:
                    (self.gen_losses['Flow_L1'], self.gen_losses['Flow_Warp'],
                     self.gen_losses['Flow_Mask']) = self.criteria['Flow'](
                        data_t, net_G_output, self.current_epoch)

                # Temporal GAN loss and feature matching loss.
                if self.cfg.trainer.loss_weight.temporal_gan > 0:
                    if self.sequence_length > 1:
                        for s in range(self.num_temporal_scales):
                            loss_GAN, loss_FM = self.compute_gan_losses(
                                net_D_output['temporal_%d' % s],
                                dis_update=False
                            )
                            self.gen_losses['GAN_T%d' % s] = loss_GAN
                            self.gen_losses['FeatureMatching_T%d' % s] = loss_FM

                # Other custom losses.
                self._get_custom_gen_losses(data_t, net_G_output, net_D_output)

                # Sum all losses together.
                total_loss = self.Tensor(1).fill_(0)
                for key in self.gen_losses:
                    if key != 'total':
                        total_loss += self.gen_losses[key] * self.weights[key]
                self.gen_losses['total'] = total_loss

            # Zero-grad and backpropagate the loss.
            self.opt_G.zero_grad(set_to_none=True)
            self.scaler_G.scale(total_loss).backward()

            # Optionally clip gradient norm.
            if hasattr(self.cfg.gen_opt, 'clip_grad_norm'):
                self.scaler_G.unscale_(self.opt_G)
                total_norm = torch.nn.utils.clip_grad_norm_(
                    self.net_G_module.parameters(),
                    self.cfg.gen_opt.clip_grad_norm
                )
                if torch.isfinite(total_norm) and \
                        total_norm > self.cfg.gen_opt.clip_grad_norm:
                    print(f"Gradient norm of the generator ({total_norm}) "
                          f"too large, clipping it to "
                          f"{self.cfg.gen_opt.clip_grad_norm}.")

            # Perform an optimizer step.
            self.scaler_G.step(self.opt_G)
            self.scaler_G.update()
            # Whether the step above was skipped.
            if self.last_step_count_G == self.opt_G._step_count:
                print("Generator overflowed!")
            else:
                self.last_step_count_G = self.opt_G._step_count
                update_finished = True

    def _get_custom_gen_losses(self, data_t, net_G_output, net_D_output):
        r"""All other custom generator losses go here.

        Args:
            data_t (dict): Training data at the current time t.
            net_G_output (dict): Output of the generator.
            net_D_output (dict): Output of the discriminator.
        """
        pass

    def get_dis_losses(self, net_D_output):
        r"""Compute discriminator losses.

        Args:
            net_D_output (dict): Output of the discriminator.
        """
        update_finished = False
        while not update_finished:
            with autocast(enabled=self.cfg.trainer.amp_config.enabled):
                # Individual frame GAN loss.
                self.dis_losses['GAN'] = self.compute_gan_losses(
                    net_D_output['indv'], dis_update=True
                )

                # Raw (hallucinated) output image GAN loss.
                if 'raw' in net_D_output:
                    raw_loss = self.compute_gan_losses(net_D_output['raw'],
                                                       dis_update=True)
                    self.dis_losses['GAN'] += raw_loss

                # Additional GAN loss.
                if self.add_dis_cfg is not None:
                    for name in self.add_dis_cfg:
                        self.dis_losses['GAN_' + name] = \
                            self.compute_gan_losses(net_D_output[name],
                                                    dis_update=True)

                # Temporal GAN loss.
                if self.cfg.trainer.loss_weight.temporal_gan > 0:
                    if self.sequence_length > 1:
                        for s in range(self.num_temporal_scales):
                            self.dis_losses['GAN_T%d' % s] = \
                                self.compute_gan_losses(
                                    net_D_output['temporal_%d' % s],
                                    dis_update=True
                                )

                # Other custom losses.
                self._get_custom_dis_losses(net_D_output)

                # Sum all losses together.
                total_loss = self.Tensor(1).fill_(0)
                for key in self.dis_losses:
                    if key != 'total':
                        total_loss += self.dis_losses[key] * self.weights[key]
                self.dis_losses['total'] = total_loss

            # Zero-grad and backpropagate the loss.
            self.opt_D.zero_grad(set_to_none=True)
            self._time_before_backward()
            self.scaler_D.scale(total_loss).backward()

            # Optionally clip gradient norm.
            if hasattr(self.cfg.dis_opt, 'clip_grad_norm'):
                self.scaler_D.unscale_(self.opt_D)
                total_norm = torch.nn.utils.clip_grad_norm_(
                    self.net_D.parameters(), self.cfg.dis_opt.clip_grad_norm
                )
                if torch.isfinite(total_norm) and \
                        total_norm > self.cfg.dis_opt.clip_grad_norm:
                    print(f"Gradient norm of the discriminator ({total_norm}) "
                          f"too large, clipping it to "
                          f"{self.cfg.dis_opt.clip_grad_norm}.")

            # Perform an optimizer step.
            self._time_before_step()
            self.scaler_D.step(self.opt_D)
            self.scaler_D.update()
            # Whether the step above was skipped.
            if self.last_step_count_D == self.opt_D._step_count:
                print("Discriminator overflowed!")
            else:
                self.last_step_count_D = self.opt_D._step_count
                update_finished = True

    def _get_custom_dis_losses(self, net_D_output):
        r"""All other custom losses go here.

        Args:
            net_D_output (dict): Output of the discriminator.
        """
        pass

    def compute_gan_losses(self, net_D_output, dis_update):
        r"""Compute GAN loss and feature matching loss.

        Args:
            net_D_output (dict): Output of the discriminator.
            dis_update (bool): Whether to update discriminator.
        """
        if net_D_output['pred_fake'] is None:
            return self.Tensor(1).fill_(0) if dis_update else [
                self.Tensor(1).fill_(0), self.Tensor(1).fill_(0)]
        if dis_update:
            # Get the GAN loss for real/fake outputs.
            GAN_loss = \
                self.criteria['GAN'](net_D_output['pred_fake']['output'], False,
                                     dis_update=True) + \
                self.criteria['GAN'](net_D_output['pred_real']['output'], True,
                                     dis_update=True)
            return GAN_loss
        else:
            # Get the GAN loss and feature matching loss for fake output.
            GAN_loss = self.criteria['GAN'](
                net_D_output['pred_fake']['output'], True, dis_update=False)

            FM_loss = self.criteria['FeatureMatching'](
                net_D_output['pred_fake']['features'],
                net_D_output['pred_real']['features'])
            return GAN_loss, FM_loss

    def get_data_t(self, data, net_G_output, data_prev, t):
        r"""Get data at current time frame given the sequence of data.

        Args:
            data (dict): Training data for current iteration.
            net_G_output (dict): Output of the generator (for previous frame).
            data_prev (dict): Data for previous frame.
            t (int): Current time.
        """
        label = data['label'][:, t]
        image = data['images'][:, t]

        if data_prev is not None:
            # Concat previous labels/fake images to the ones before.
            num_frames_G = self.cfg.data.num_frames_G
            prev_labels = concat_frames(data_prev['prev_labels'],
                                        data_prev['label'], num_frames_G - 1)
            prev_images = concat_frames(
                data_prev['prev_images'],
                net_G_output['fake_images'].detach(), num_frames_G - 1)
        else:
            prev_labels = prev_images = None

        data_t = dict()
        data_t['label'] = label
        data_t['image'] = image
        data_t['prev_labels'] = prev_labels
        data_t['prev_images'] = prev_images
        data_t['real_prev_image'] = data['images'][:, t - 1] if t > 0 else None
        return data_t

    def _end_of_iteration(self, data, current_epoch, current_iteration):
        r"""Print the errors to console."""
        if not torch.distributed.is_initialized():
            if current_iteration % self.cfg.logging_iter == 0:
                message = '(epoch: %d, iters: %d) ' % (current_epoch,
                                                       current_iteration)
                for k, v in self.gen_losses.items():
                    if k != 'total':
                        message += '%s: %.3f,  ' % (k, v)
                message += '\n'
                for k, v in self.dis_losses.items():
                    if k != 'total':
                        message += '%s: %.3f,  ' % (k, v)
                print(message)

    def write_metrics(self):
        r"""If moving average model presents, we have two meters one for
        regular FID and one for average FID. If no moving average model,
        we just report average FID.
        """
        if self.cfg.trainer.model_average_config.enabled:
            regular_fid, average_fid = self._compute_fid()
            if regular_fid is None or average_fid is None:
                return
            metric_dict = {'FID/average': average_fid, 'FID/regular': regular_fid}
            self._write_to_meters(metric_dict, self.metric_meters, reduce=False)
        else:
            regular_fid = self._compute_fid()
            if regular_fid is None:
                return
            metric_dict = {'FID/regular': regular_fid}
            self._write_to_meters(metric_dict, self.metric_meters, reduce=False)
        self._flush_meters(self.metric_meters)

    def _compute_fid(self):
        r"""Compute FID values."""
        self.net_G.eval()
        self.net_G_output = None
        # Due to complicated video evaluation procedure we are using, we will
        # pass the trainer to the evaluation code instead of the
        # generator network.
        # net_G_for_evaluation = self.net_G
        trainer = self
        self.test_in_model_average_mode = False
        regular_fid_path = self._get_save_path('regular_fid', 'npy')
        few_shot = True if 'few_shot' in self.cfg.data.type else False
        regular_fid_value = compute_fid(regular_fid_path, self.val_data_loader,
                                        trainer,
                                        sample_size=self.sample_size,
                                        is_video=True, few_shot_video=few_shot)
        print('Epoch {:05}, Iteration {:09}, Regular FID {}'.format(
            self.current_epoch, self.current_iteration, regular_fid_value))
        if self.cfg.trainer.model_average_config.enabled:
            # Due to complicated video evaluation procedure we are using,
            # we will pass the trainer to the evaluation code instead of the
            # generator network.
            # avg_net_G_for_evaluation = self.net_G.module.averaged_model
            trainer_avg_mode = self
            self.test_in_model_average_mode = True
            # The above flag will be reset after computing FID.
            fid_path = self._get_save_path('average_fid', 'npy')
            few_shot = True if 'few_shot' in self.cfg.data.type else False
            fid_value = compute_fid(fid_path, self.val_data_loader,
                                    trainer_avg_mode,
                                    sample_size=self.sample_size,
                                    is_video=True, few_shot_video=few_shot)
            print('Epoch {:05}, Iteration {:09}, Average FID {}'.format(
                self.current_epoch, self.current_iteration, fid_value))
            self.net_G.float()
            return regular_fid_value, fid_value
        else:
            self.net_G.float()
            return regular_fid_value

    def visualize_label(self, label):
        r"""Visualize the input label when saving to image.

        Args:
            label (tensor): Input label tensor.
        """
        cfgdata = self.cfg.data
        if hasattr(cfgdata, 'for_pose_dataset'):
            label = tensor2pose(self.cfg, label)
        elif hasattr(cfgdata, 'input_labels') and \
                'seg_maps' in cfgdata.input_labels:
            for input_type in cfgdata.input_types:
                if 'seg_maps' in input_type:
                    num_labels = cfgdata.one_hot_num_classes.seg_maps
            label = tensor2label(label, num_labels)
        elif getattr(cfgdata, 'label_channels', 1) > 3:
            label = tensor2im(label.sum(1, keepdim=True))
        else:
            label = tensor2im(label)
        return label

    def save_image(self, path, data):
        r"""Save the output images to path.
        Note when the generate_raw_output is FALSE. Then,
        first_net_G_output['fake_raw_images'] is None and will not be displayed.
        In model average mode, we will plot the flow visualization twice.
        Args:
            path (str): Save path.
            data (dict): Training data for current iteration.
        """
        self.net_G.eval()
        if self.cfg.trainer.model_average_config.enabled:
            self.net_G.module.averaged_model.eval()
        self.net_G_output = None
        with torch.no_grad():
            first_net_G_output, net_G_output, all_info = self.gen_frames(data)
            if self.cfg.trainer.model_average_config.enabled:
                first_net_G_output_avg, net_G_output_avg, _ = self.gen_frames(
                    data, use_model_average=True)

        # Visualize labels.
        label_lengths = self.train_data_loader.dataset.get_label_lengths()
        labels = split_labels(data['label'], label_lengths)
        vis_labels_start, vis_labels_end = [], []
        for key, value in labels.items():
            if key == 'seg_maps':
                vis_labels_start.append(self.visualize_label(value[:, -1]))
                vis_labels_end.append(self.visualize_label(value[:, 0]))
            else:
                vis_labels_start.append(tensor2im(value[:, -1]))
                vis_labels_end.append(tensor2im(value[:, 0]))

        if is_master():
            vis_images = [
                *vis_labels_start,
                tensor2im(data['images'][:, -1]),
                tensor2im(net_G_output['fake_images']),
                tensor2im(net_G_output['fake_raw_images'])]
            if self.cfg.trainer.model_average_config.enabled:
                vis_images += [
                    tensor2im(net_G_output_avg['fake_images']),
                    tensor2im(net_G_output_avg['fake_raw_images'])]

            if self.sequence_length > 1:
                vis_images_first = [
                    *vis_labels_end,
                    tensor2im(data['images'][:, 0]),
                    tensor2im(first_net_G_output['fake_images']),
                    tensor2im(first_net_G_output['fake_raw_images'])
                ]
                if self.cfg.trainer.model_average_config.enabled:
                    vis_images_first += [
                        tensor2im(first_net_G_output_avg['fake_images']),
                        tensor2im(first_net_G_output_avg['fake_raw_images'])]

                if self.use_flow:
                    flow_gt, conf_gt = self.criteria['Flow'].flowNet(
                        data['images'][:, -1], data['images'][:, -2])
                    warped_image_gt = resample(data['images'][:, -1], flow_gt)
                    vis_images_first += [
                        tensor2flow(flow_gt),
                        tensor2im(conf_gt, normalize=False),
                        tensor2im(warped_image_gt),
                    ]
                    vis_images += [
                        tensor2flow(net_G_output['fake_flow_maps']),
                        tensor2im(net_G_output['fake_occlusion_masks'],
                                  normalize=False),
                        tensor2im(net_G_output['warped_images']),
                    ]
                    if self.cfg.trainer.model_average_config.enabled:
                        vis_images_first += [
                            tensor2flow(flow_gt),
                            tensor2im(conf_gt, normalize=False),
                            tensor2im(warped_image_gt),
                        ]
                        vis_images += [
                            tensor2flow(net_G_output_avg['fake_flow_maps']),
                            tensor2im(net_G_output_avg['fake_occlusion_masks'],
                                      normalize=False),
                            tensor2im(net_G_output_avg['warped_images'])]

                vis_images = [[np.vstack((im_first, im))
                               for im_first, im in zip(imgs_first, imgs)]
                              for imgs_first, imgs in zip(vis_images_first,
                                                          vis_images)
                              if imgs is not None]

            image_grid = np.hstack([np.vstack(im) for im in
                                    vis_images if im is not None])

            print('Save output images to {}'.format(path))
            os.makedirs(os.path.dirname(path), exist_ok=True)
            imageio.imwrite(path, image_grid)

            # Gather all outputs for dumping into video.
            if self.sequence_length > 1:
                output_images = []
                for item in all_info['outputs']:
                    output_images.append(tensor2im(item['fake_images'])[0])

                imageio.mimwrite(os.path.splitext(path)[0] + '.mp4',
                                 output_images, fps=2, macro_block_size=None)

        self.net_G.float()