File size: 8,832 Bytes
f670afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md
import torch
from torch import nn

from imaginaire.evaluation import compute_fid
from imaginaire.losses import GANLoss, PerceptualLoss  # GaussianKLLoss
from imaginaire.trainers.base import BaseTrainer


class Trainer(BaseTrainer):
    r"""Reimplementation of the UNIT (https://arxiv.org/abs/1703.00848)
    algorithm.

    Args:
        cfg (obj): Global configuration.
        net_G (obj): Generator network.
        net_D (obj): Discriminator network.
        opt_G (obj): Optimizer for the generator network.
        opt_D (obj): Optimizer for the discriminator network.
        sch_G (obj): Scheduler for the generator optimizer.
        sch_D (obj): Scheduler for the discriminator optimizer.
        train_data_loader (obj): Train data loader.
        val_data_loader (obj): Validation data loader.
    """

    def __init__(self, cfg, net_G, net_D, opt_G, opt_D, sch_G, sch_D,
                 train_data_loader, val_data_loader):
        super().__init__(cfg, net_G, net_D, opt_G, opt_D, sch_G, sch_D,
                         train_data_loader, val_data_loader)
        self.best_fid_a = None
        self.best_fid_b = None

    def _init_loss(self, cfg):
        r"""Initialize loss terms. In UNIT, we have several loss terms
        including the GAN loss, the image reconstruction loss, the cycle
        reconstruction loss, and the gaussian kl loss. We also have an
        optional perceptual loss. A user can choose to have the gradient
        penalty loss too.

        Args:
            cfg (obj): Global configuration.
        """
        self.criteria['gan'] = GANLoss(cfg.trainer.gan_mode)
        # self.criteria['gaussian_kl'] = GaussianKLLoss()
        self.criteria['image_recon'] = nn.L1Loss()
        self.criteria['cycle_recon'] = nn.L1Loss()
        if getattr(cfg.trainer.loss_weight, 'perceptual', 0) > 0:
            self.criteria['perceptual'] = \
                PerceptualLoss(network=cfg.trainer.perceptual_mode,
                               layers=cfg.trainer.perceptual_layers)

        for loss_name, loss_weight in cfg.trainer.loss_weight.__dict__.items():
            if loss_weight > 0:
                self.weights[loss_name] = loss_weight

    def gen_forward(self, data):
        r"""Compute the loss for UNIT generator.

        Args:
            data (dict): Training data at the current iteration.
        """
        cycle_recon = 'cycle_recon' in self.weights
        perceptual = 'perceptual' in self.weights
        net_G_output = self.net_G(data, cycle_recon=cycle_recon)
        net_D_output = self.net_D(data, net_G_output, real=False)

        self._time_before_loss()

        # GAN loss
        self.gen_losses['gan_a'] = self.criteria['gan'](
            net_D_output['out_ba'], True, dis_update=False)
        self.gen_losses['gan_b'] = self.criteria['gan'](
            net_D_output['out_ab'], True, dis_update=False)
        self.gen_losses['gan'] = \
            self.gen_losses['gan_a'] + self.gen_losses['gan_b']

        # Perceptual loss
        if perceptual:
            self.gen_losses['perceptual_a'] = \
                self.criteria['perceptual'](net_G_output['images_ab'],
                                            data['images_a'])
            self.gen_losses['perceptual_b'] = \
                self.criteria['perceptual'](net_G_output['images_ba'],
                                            data['images_b'])
            self.gen_losses['perceptual'] = \
                self.gen_losses['perceptual_a'] + \
                self.gen_losses['perceptual_b']

        # Image reconstruction loss
        self.gen_losses['image_recon'] = \
            self.criteria['image_recon'](net_G_output['images_aa'],
                                         data['images_a']) + \
            self.criteria['image_recon'](net_G_output['images_bb'],
                                         data['images_b'])

        """
        # KL loss
        self.gen_losses['gaussian_kl'] = \
            self.criteria['gaussian_kl'](net_G_output['content_mu_a']) + \
            self.criteria['gaussian_kl'](net_G_output['content_mu_b']) + \
            self.criteria['gaussian_kl'](net_G_output['content_mu_a_recon']) + \
            self.criteria['gaussian_kl'](net_G_output['content_mu_b_recon'])
        """

        # Cycle reconstruction loss
        if cycle_recon:
            self.gen_losses['cycle_recon_aba'] = \
                self.criteria['cycle_recon'](net_G_output['images_aba'],
                                             data['images_a'])
            self.gen_losses['cycle_recon_bab'] = \
                self.criteria['cycle_recon'](net_G_output['images_bab'],
                                             data['images_b'])
            self.gen_losses['cycle_recon'] = \
                self.gen_losses['cycle_recon_aba'] + \
                self.gen_losses['cycle_recon_bab']

        # Compute total loss
        total_loss = self._get_total_loss(gen_forward=True)
        return total_loss

    def dis_forward(self, data):
        r"""Compute the loss for UNIT discriminator.

        Args:
            data (dict): Training data at the current iteration.
        """
        with torch.no_grad():
            net_G_output = self.net_G(data, image_recon=False,
                                      cycle_recon=False)
        net_G_output['images_ba'].requires_grad = True
        net_G_output['images_ab'].requires_grad = True
        net_D_output = self.net_D(data, net_G_output)

        self._time_before_loss()

        # GAN loss.
        self.dis_losses['gan_a'] = \
            self.criteria['gan'](net_D_output['out_a'], True) + \
            self.criteria['gan'](net_D_output['out_ba'], False)
        self.dis_losses['gan_b'] = \
            self.criteria['gan'](net_D_output['out_b'], True) + \
            self.criteria['gan'](net_D_output['out_ab'], False)
        self.dis_losses['gan'] = \
            self.dis_losses['gan_a'] + self.dis_losses['gan_b']

        # Compute total loss
        total_loss = self._get_total_loss(gen_forward=False)
        return total_loss

    def _get_visualizations(self, data):
        r"""Compute visualization image.

        Args:
            data (dict): The current batch.
        """
        if self.cfg.trainer.model_average_config.enabled:
            net_G_for_evaluation = self.net_G.module.averaged_model
        else:
            net_G_for_evaluation = self.net_G
        with torch.no_grad():
            net_G_output = net_G_for_evaluation(data)
            vis_images = [data['images_a'],
                          data['images_b'],
                          net_G_output['images_aa'],
                          net_G_output['images_bb'],
                          net_G_output['images_ab'],
                          net_G_output['images_ba'],
                          net_G_output['images_aba'],
                          net_G_output['images_bab']]
            return vis_images

    def write_metrics(self):
        r"""Compute metrics and save them to tensorboard"""
        cur_fid_a, cur_fid_b = self._compute_fid()
        if self.best_fid_a is not None:
            self.best_fid_a = min(self.best_fid_a, cur_fid_a)
        else:
            self.best_fid_a = cur_fid_a
        if self.best_fid_b is not None:
            self.best_fid_b = min(self.best_fid_b, cur_fid_b)
        else:
            self.best_fid_b = cur_fid_b
        self._write_to_meters({'FID_a': cur_fid_a,
                               'best_FID_a': self.best_fid_a,
                               'FID_b': cur_fid_b,
                               'best_FID_b': self.best_fid_b},
                              self.metric_meters)
        self._flush_meters(self.metric_meters)

    def _compute_fid(self):
        r"""Compute FID for both domains.
        """
        self.net_G.eval()
        if self.cfg.trainer.model_average_config.enabled:
            net_G_for_evaluation = self.net_G.module.averaged_model
        else:
            net_G_for_evaluation = self.net_G
        fid_a_path = self._get_save_path('fid_a', 'npy')
        fid_b_path = self._get_save_path('fid_b', 'npy')
        fid_value_a = compute_fid(fid_a_path, self.val_data_loader,
                                  net_G_for_evaluation, 'images_a', 'images_ba')
        fid_value_b = compute_fid(fid_b_path, self.val_data_loader,
                                  net_G_for_evaluation, 'images_b', 'images_ab')
        print('Epoch {:05}, Iteration {:09}, FID a {}, FID b {}'.format(
            self.current_epoch, self.current_iteration,
            fid_value_a, fid_value_b))
        return fid_value_a, fid_value_b