File size: 12,236 Bytes
f670afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md
import functools
import math

import torch
import torch.nn.functional as F

from imaginaire.evaluation import compute_fid
from imaginaire.losses import (FeatureMatchingLoss, GANLoss, GaussianKLLoss,
                               PerceptualLoss)
from imaginaire.trainers.base import BaseTrainer
from imaginaire.utils.distributed import master_only_print as print
from imaginaire.utils.model_average import reset_batch_norm, \
    calibrate_batch_norm_momentum
from imaginaire.utils.misc import split_labels, to_device
from imaginaire.utils.visualization import tensor2label


class Trainer(BaseTrainer):
    r"""Initialize SPADE trainer.

    Args:
        cfg (Config): Global configuration.
        net_G (obj): Generator network.
        net_D (obj): Discriminator network.
        opt_G (obj): Optimizer for the generator network.
        opt_D (obj): Optimizer for the discriminator network.
        sch_G (obj): Scheduler for the generator optimizer.
        sch_D (obj): Scheduler for the discriminator optimizer.
        train_data_loader (obj): Train data loader.
        val_data_loader (obj): Validation data loader.
    """

    def __init__(self,
                 cfg,
                 net_G,
                 net_D,
                 opt_G,
                 opt_D,
                 sch_G,
                 sch_D,
                 train_data_loader,
                 val_data_loader):
        super(Trainer, self).__init__(cfg, net_G, net_D, opt_G,
                                      opt_D, sch_G, sch_D,
                                      train_data_loader, val_data_loader)
        if cfg.data.type == 'imaginaire.datasets.paired_videos':
            self.video_mode = True
        else:
            self.video_mode = False

    def _init_loss(self, cfg):
        r"""Initialize loss terms.

        Args:
            cfg (obj): Global configuration.
        """
        self.criteria['GAN'] = GANLoss(cfg.trainer.gan_mode)
        self.weights['GAN'] = cfg.trainer.loss_weight.gan
        # Setup the perceptual loss. Note that perceptual loss can run in
        # fp16 mode for additional speed. We find that running on fp16 mode
        # leads to improve training speed while maintaining the same accuracy.
        if hasattr(cfg.trainer, 'perceptual_loss'):
            self.criteria['Perceptual'] = \
                PerceptualLoss(
                    network=cfg.trainer.perceptual_loss.mode,
                    layers=cfg.trainer.perceptual_loss.layers,
                    weights=cfg.trainer.perceptual_loss.weights)
            self.weights['Perceptual'] = cfg.trainer.loss_weight.perceptual
        # Setup the feature matching loss.
        self.criteria['FeatureMatching'] = FeatureMatchingLoss()
        self.weights['FeatureMatching'] = \
            cfg.trainer.loss_weight.feature_matching
        # Setup the Gaussian KL divergence loss.
        self.criteria['GaussianKL'] = GaussianKLLoss()
        self.weights['GaussianKL'] = cfg.trainer.loss_weight.kl

    def _start_of_iteration(self, data, current_iteration):
        r"""Model specific custom start of iteration process. We will do two
        things. First, put all the data to GPU. Second, we will resize the
        input so that it becomes multiple of the factor for bug-free
        convolutional operations. This factor is given by the yaml file.
        E.g., base = getattr(self.net_G, 'base', 32)

        Args:
            data (dict): The current batch.
            current_iteration (int): The iteration number of the current batch.
        """
        data = to_device(data, 'cuda')
        data = self._resize_data(data)
        return data

    def gen_forward(self, data):
        r"""Compute the loss for SPADE generator.

        Args:
            data (dict): Training data at the current iteration.
        """
        net_G_output = self.net_G(data)
        net_D_output = self.net_D(data, net_G_output)

        self._time_before_loss()

        output_fake = self._get_outputs(net_D_output, real=False)
        self.gen_losses['GAN'] = self.criteria['GAN'](output_fake, True, dis_update=False)

        self.gen_losses['FeatureMatching'] = self.criteria['FeatureMatching'](
            net_D_output['fake_features'], net_D_output['real_features'])

        if self.net_G_module.use_style_encoder:
            self.gen_losses['GaussianKL'] = \
                self.criteria['GaussianKL'](net_G_output['mu'],
                                            net_G_output['logvar'])
        else:
            self.gen_losses['GaussianKL'] = \
                self.gen_losses['GAN'].new_tensor([0])

        if hasattr(self.cfg.trainer, 'perceptual_loss'):
            self.gen_losses['Perceptual'] = self.criteria['Perceptual'](
                net_G_output['fake_images'], data['images'])

        total_loss = self.gen_losses['GAN'].new_tensor([0])
        for key in self.criteria:
            total_loss += self.gen_losses[key] * self.weights[key]

        self.gen_losses['total'] = total_loss
        return total_loss

    def dis_forward(self, data):
        r"""Compute the loss for SPADE discriminator.

        Args:
            data (dict): Training data at the current iteration.
        """
        with torch.no_grad():
            net_G_output = self.net_G(data)
            net_G_output['fake_images'] = net_G_output['fake_images'].detach()
        net_D_output = self.net_D(data, net_G_output)

        self._time_before_loss()

        output_fake = self._get_outputs(net_D_output, real=False)
        output_real = self._get_outputs(net_D_output, real=True)
        fake_loss = self.criteria['GAN'](output_fake, False, dis_update=True)
        true_loss = self.criteria['GAN'](output_real, True, dis_update=True)
        self.dis_losses['GAN/fake'] = fake_loss
        self.dis_losses['GAN/true'] = true_loss
        self.dis_losses['GAN'] = fake_loss + true_loss
        total_loss = self.dis_losses['GAN'] * self.weights['GAN']
        self.dis_losses['total'] = total_loss
        return total_loss

    def _get_visualizations(self, data):
        r"""Compute visualization image. We will first recalculate the batch
        statistics for the moving average model.

        Args:
            data (dict): The current batch.
        """
        self.recalculate_batch_norm_statistics(
            self.train_data_loader)
        with torch.no_grad():
            label_lengths = self.train_data_loader.dataset.get_label_lengths()
            labels = split_labels(data['label'], label_lengths)
            # Get visualization of the segmentation mask.
            vis_images = list()
            vis_images.append(data['images'])
            net_G_output = self.net_G(data, random_style=True)
            # print(labels.keys())
            for key in labels.keys():
                if 'seg' in key:
                    segmaps = tensor2label(labels[key], label_lengths[key], output_normalized_tensor=True)
                    segmaps = torch.cat([x.unsqueeze(0) for x in segmaps], 0)
                    vis_images.append(segmaps)
                if 'edge' in key:
                    edgemaps = torch.cat((labels[key], labels[key], labels[key]), 1)
                    vis_images.append(edgemaps)

            vis_images.append(net_G_output['fake_images'])
            if self.cfg.trainer.model_average_config.enabled:
                net_G_model_average_output = \
                    self.net_G.module.averaged_model(data, random_style=True)
                vis_images.append(net_G_model_average_output['fake_images'])
        return vis_images

    def recalculate_batch_norm_statistics(self, data_loader):
        r"""Update the statistics in the moving average model.

        Args:
            data_loader (pytorch data loader): Data loader for estimating the
                statistics.
        """
        if not self.cfg.trainer.model_average_config.enabled:
            return
        model_average_iteration = \
            self.cfg.trainer.model_average_config.num_batch_norm_estimation_iterations
        if model_average_iteration == 0:
            return
        with torch.no_grad():
            # Accumulate bn stats..
            self.net_G.module.averaged_model.train()
            # Reset running stats.
            self.net_G.module.averaged_model.apply(reset_batch_norm)
            for cal_it, cal_data in enumerate(data_loader):
                if cal_it >= model_average_iteration:
                    print('Done with {} iterations of updating batch norm '
                          'statistics'.format(model_average_iteration))
                    break
                # cal_data = to_device(cal_data, 'cuda')
                cal_data = self._start_of_iteration(cal_data, 0)
                # Averaging over all batches
                self.net_G.module.averaged_model.apply(
                    calibrate_batch_norm_momentum)
                self.net_G.module.averaged_model(cal_data)

    def write_metrics(self):
        r"""If moving average model presents, we have two meters one for
        regular FID and one for average FID. If no moving average model,
        we just report average FID.
        """
        if self.cfg.trainer.model_average_config.enabled:
            regular_fid, average_fid = self._compute_fid()
            metric_dict = {'FID/average': average_fid, 'FID/regular': regular_fid}
            self._write_to_meters(metric_dict, self.metric_meters, reduce=False)
        else:
            regular_fid = self._compute_fid()
            metric_dict = {'FID/regular': regular_fid}
            self._write_to_meters(metric_dict, self.metric_meters, reduce=False)
        self._flush_meters(self.metric_meters)

    def _compute_fid(self):
        r"""We will compute FID for the regular model using the eval mode.
        For the moving average model, we will use the eval mode.
        """
        self.net_G.eval()
        net_G_for_evaluation = \
            functools.partial(self.net_G, random_style=True)
        regular_fid_path = self._get_save_path('regular_fid', 'npy')
        preprocess = \
            functools.partial(self._start_of_iteration, current_iteration=0)

        regular_fid_value = compute_fid(regular_fid_path,
                                        self.val_data_loader,
                                        net_G_for_evaluation,
                                        preprocess=preprocess)
        print('Epoch {:05}, Iteration {:09}, Regular FID {}'.format(
            self.current_epoch, self.current_iteration, regular_fid_value))
        if self.cfg.trainer.model_average_config.enabled:
            avg_net_G_for_evaluation = \
                functools.partial(self.net_G.module.averaged_model,
                                  random_style=True)
            fid_path = self._get_save_path('average_fid', 'npy')
            fid_value = compute_fid(fid_path, self.val_data_loader,
                                    avg_net_G_for_evaluation,
                                    preprocess=preprocess)
            print('Epoch {:05}, Iteration {:09}, FID {}'.format(
                self.current_epoch, self.current_iteration, fid_value))
            self.net_G.float()
            return regular_fid_value, fid_value
        else:
            self.net_G.float()
            return regular_fid_value

    def _resize_data(self, data):
        r"""Resize input label maps and images so that it can be properly
        generated by the generator.

        Args:
            data (dict): Input dictionary contains 'label' and 'image fields.
        """
        base = getattr(self.net_G, 'base', 32)
        sy = math.floor(data['label'].size()[2] * 1.0 // base) * base
        sx = math.floor(data['label'].size()[3] * 1.0 // base) * base
        data['label'] = F.interpolate(
            data['label'], size=[sy, sx], mode='nearest')
        if 'images' in data.keys():
            data['images'] = F.interpolate(
                data['images'], size=[sy, sx], mode='bicubic')
        return data