File size: 13,820 Bytes
f670afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md
import collections
import os

import torch
import torch.nn as nn

from imaginaire.config import Config
from imaginaire.generators.spade import Generator as SPADEGenerator
from imaginaire.losses import (FeatureMatchingLoss, GaussianKLLoss, PerceptualLoss)
from imaginaire.model_utils.gancraft.loss import GANLoss
from imaginaire.trainers.base import BaseTrainer
from imaginaire.utils.distributed import master_only_print as print
from imaginaire.utils.io import get_checkpoint
from imaginaire.utils.misc import split_labels, to_device
from imaginaire.utils.trainer import ModelAverage, WrappedModel
from imaginaire.utils.visualization import tensor2label


class GauGANLoader(object):
    r"""Manages the SPADE/GauGAN model used to generate pseudo-GTs for training GANcraft.

    Args:
        gaugan_cfg (Config): SPADE configuration.
    """

    def __init__(self, gaugan_cfg):
        print('[GauGANLoader] Loading GauGAN model.')
        cfg = Config(gaugan_cfg.config)
        default_checkpoint_path = os.path.basename(gaugan_cfg.config).split('.yaml')[0] + '-' + \
            cfg.pretrained_weight + '.pt'
        checkpoint = get_checkpoint(default_checkpoint_path, cfg.pretrained_weight)
        ckpt = torch.load(checkpoint)

        net_G = WrappedModel(ModelAverage(SPADEGenerator(cfg.gen, cfg.data).to('cuda')))
        net_G.load_state_dict(ckpt['net_G'])
        self.net_GG = net_G.module.averaged_model
        self.net_GG.eval()
        self.net_GG.half()
        print('[GauGANLoader] GauGAN loading complete.')

    def eval(self, label, z=None, style_img=None):
        r"""Produce output given segmentation and other conditioning inputs.
        random style will be used if neither z nor style_img is provided.

        Args:
            label (N x C x H x W tensor): One-hot segmentation mask of shape.
            z: Style vector.
            style_img: Style image.
        """
        inputs = {'label': label[:, :-1].detach().half()}
        random_style = True

        if z is not None:
            random_style = False
            inputs['z'] = z.detach().half()
        elif style_img is not None:
            random_style = False
            inputs['images'] = style_img.detach().half()

        net_GG_output = self.net_GG(inputs, random_style=random_style)

        return net_GG_output['fake_images']


class Trainer(BaseTrainer):
    r"""Initialize GANcraft trainer.

    Args:
        cfg (Config): Global configuration.
        net_G (obj): Generator network.
        net_D (obj): Discriminator network.
        opt_G (obj): Optimizer for the generator network.
        opt_D (obj): Optimizer for the discriminator network.
        sch_G (obj): Scheduler for the generator optimizer.
        sch_D (obj): Scheduler for the discriminator optimizer.
        train_data_loader (obj): Train data loader.
        val_data_loader (obj): Validation data loader.
    """

    def __init__(self,
                 cfg,
                 net_G,
                 net_D,
                 opt_G,
                 opt_D,
                 sch_G,
                 sch_D,
                 train_data_loader,
                 val_data_loader):
        super(Trainer, self).__init__(cfg, net_G, net_D, opt_G,
                                      opt_D, sch_G, sch_D,
                                      train_data_loader, val_data_loader)

        # Load the pseudo-GT network only if in training mode, else not needed.
        if not self.is_inference:
            self.gaugan_model = GauGANLoader(cfg.trainer.gaugan_loader)

    def _init_loss(self, cfg):
        r"""Initialize loss terms.

        Args:
            cfg (obj): Global configuration.
        """
        if hasattr(cfg.trainer.loss_weight, 'gan'):
            self.criteria['GAN'] = GANLoss()
            self.weights['GAN'] = cfg.trainer.loss_weight.gan
        if hasattr(cfg.trainer.loss_weight, 'pseudo_gan'):
            self.criteria['PGAN'] = GANLoss()
            self.weights['PGAN'] = cfg.trainer.loss_weight.pseudo_gan
        if hasattr(cfg.trainer.loss_weight, 'l2'):
            self.criteria['L2'] = nn.MSELoss()
            self.weights['L2'] = cfg.trainer.loss_weight.l2
        if hasattr(cfg.trainer.loss_weight, 'l1'):
            self.criteria['L1'] = nn.L1Loss()
            self.weights['L1'] = cfg.trainer.loss_weight.l1
        if hasattr(cfg.trainer.loss_weight, 'TV')
        if hasattr(cfg.trainer, 'perceptual_loss'):
            self.criteria['Perceptual'] = \
                PerceptualLoss(
                    network=cfg.trainer.perceptual_loss.mode,
                    layers=cfg.trainer.perceptual_loss.layers,
                    weights=cfg.trainer.perceptual_loss.weights)
            self.weights['Perceptual'] = cfg.trainer.loss_weight.perceptual
        # Setup the feature matching loss.
        if hasattr(cfg.trainer.loss_weight, 'feature_matching'):
            self.criteria['FeatureMatching'] = FeatureMatchingLoss()
            self.weights['FeatureMatching'] = \
                cfg.trainer.loss_weight.feature_matching
        # Setup the Gaussian KL divergence loss.
        if hasattr(cfg.trainer.loss_weight, 'kl'):
            self.criteria['GaussianKL'] = GaussianKLLoss()
            self.weights['GaussianKL'] = cfg.trainer.loss_weight.kl

    def _start_of_epoch(self, current_epoch):
        torch.cuda.empty_cache()  # Prevent the first iteration from running OOM.

    def _start_of_iteration(self, data, current_iteration):
        r"""Model specific custom start of iteration process. We will do two
        things. First, put all the data to GPU. Second, we will resize the
        input so that it becomes multiple of the factor for bug-free
        convolutional operations. This factor is given by the yaml file.
        E.g., base = getattr(self.net_G, 'base', 32)

        Args:
            data (dict): The current batch.
            current_iteration (int): The iteration number of the current batch.
        """
        data = to_device(data, 'cuda')

        # Sample camera poses and pseudo-GTs.
        with torch.no_grad():
            samples = self.net_G.module.sample_camera(data, self.gaugan_model.eval)

        return {**data, **samples}

    def gen_forward(self, data):
        r"""Compute the loss for SPADE generator.

        Args:
            data (dict): Training data at the current iteration.
        """
        net_G_output = self.net_G(data, random_style=False)

        self._time_before_loss()

        if 'GAN' in self.criteria or 'PGAN' in self.criteria:
            incl_pseudo_real = False
            if 'FeatureMatching' in self.criteria:
                incl_pseudo_real = True
            net_D_output = self.net_D(data, net_G_output, incl_real=False, incl_pseudo_real=incl_pseudo_real)
            output_fake = net_D_output['fake_outputs']  # Choose from real_outputs and fake_outputs.

            gan_loss = self.criteria['GAN'](output_fake, True, dis_update=False)
            if 'GAN' in self.criteria:
                self.gen_losses['GAN'] = gan_loss
            if 'PGAN' in self.criteria:
                self.gen_losses['PGAN'] = gan_loss

        if 'FeatureMatching' in self.criteria:
            self.gen_losses['FeatureMatching'] = self.criteria['FeatureMatching'](
                net_D_output['fake_features'], net_D_output['pseudo_real_features'])

        if 'GaussianKL' in self.criteria:
            self.gen_losses['GaussianKL'] = self.criteria['GaussianKL'](net_G_output['mu'], net_G_output['logvar'])

        # Perceptual loss is always between fake image and pseudo real image.
        if 'Perceptual' in self.criteria:
            self.gen_losses['Perceptual'] = self.criteria['Perceptual'](
                net_G_output['fake_images'], data['pseudo_real_img'])

        # Reconstruction loss between fake and pseudo real.
        if 'L2' in self.criteria:
            self.gen_losses['L2'] = self.criteria['L2'](net_G_output['fake_images'], data['pseudo_real_img'])
        if 'L1' in self.criteria:
            self.gen_losses['L1'] = self.criteria['L1'](net_G_output['fake_images'], data['pseudo_real_img'])

        total_loss = 0
        for key in self.criteria:
            total_loss = total_loss + self.gen_losses[key] * self.weights[key]

        self.gen_losses['total'] = total_loss
        return total_loss

    def dis_forward(self, data):
        r"""Compute the loss for GANcraft discriminator.

        Args:
            data (dict): Training data at the current iteration.
        """
        if 'GAN' not in self.criteria and 'PGAN' not in self.criteria:
            return

        with torch.no_grad():
            net_G_output = self.net_G(data, random_style=False)
            net_G_output['fake_images'] = net_G_output['fake_images'].detach()

        incl_real = False
        incl_pseudo_real = False
        if 'GAN' in self.criteria:
            incl_real = True
        if 'PGAN' in self.criteria:
            incl_pseudo_real = True
        net_D_output = self.net_D(data, net_G_output, incl_real=incl_real, incl_pseudo_real=incl_pseudo_real)

        self._time_before_loss()
        total_loss = 0
        if 'GAN' in self.criteria:
            output_fake = net_D_output['fake_outputs']
            output_real = net_D_output['real_outputs']

            fake_loss = self.criteria['GAN'](output_fake, False, dis_update=True)
            true_loss = self.criteria['GAN'](output_real, True, dis_update=True)
            self.dis_losses['GAN/fake'] = fake_loss
            self.dis_losses['GAN/true'] = true_loss
            self.dis_losses['GAN'] = fake_loss + true_loss
            total_loss = total_loss + self.dis_losses['GAN'] * self.weights['GAN']
        if 'PGAN' in self.criteria:
            output_fake = net_D_output['fake_outputs']
            output_pseudo_real = net_D_output['pseudo_real_outputs']

            fake_loss = self.criteria['PGAN'](output_fake, False, dis_update=True)
            true_loss = self.criteria['PGAN'](output_pseudo_real, True, dis_update=True)
            self.dis_losses['PGAN/fake'] = fake_loss
            self.dis_losses['PGAN/true'] = true_loss
            self.dis_losses['PGAN'] = fake_loss + true_loss
            total_loss = total_loss + self.dis_losses['PGAN'] * self.weights['PGAN']

        self.dis_losses['total'] = total_loss
        return total_loss

    def _get_visualizations(self, data):
        r"""Compute visualization image.

        Args:
            data (dict): The current batch.
        """
        with torch.no_grad():
            label_lengths = self.train_data_loader.dataset.get_label_lengths()
            labels = split_labels(data['label'], label_lengths)

            # Get visualization of the real image and segmentation mask.
            segmap = tensor2label(labels['seg_maps'], label_lengths['seg_maps'], output_normalized_tensor=True)
            segmap = torch.cat([x.unsqueeze(0) for x in segmap], 0)

            # Get output from GANcraft model
            net_G_output_randstyle = self.net_G(data, random_style=True)
            net_G_output = self.net_G(data, random_style=False)

            vis_images = [data['images'], segmap, net_G_output_randstyle['fake_images'], net_G_output['fake_images']]

            if 'fake_masks' in data:
                # Get pseudo-GT.
                labels = split_labels(data['fake_masks'], label_lengths)
                segmap = tensor2label(labels['seg_maps'], label_lengths['seg_maps'], output_normalized_tensor=True)
                segmap = torch.cat([x.unsqueeze(0) for x in segmap], 0)
                vis_images.append(segmap)

            if 'pseudo_real_img' in data:
                vis_images.append(data['pseudo_real_img'])

            if self.cfg.trainer.model_average_config.enabled:
                net_G_model_average_output = self.net_G.module.averaged_model(data, random_style=True)
                vis_images.append(net_G_model_average_output['fake_images'])
        return vis_images

    def load_checkpoint(self, cfg, checkpoint_path, resume=None, load_sch=True):
        r"""Load network weights, optimizer parameters, scheduler parameters
        from a checkpoint.

        Args:
            cfg (obj): Global configuration.
            checkpoint_path (str): Path to the checkpoint.
            resume (bool or None): If not ``None``, will determine whether or
            not to load optimizers in addition to network weights.
        """
        ret = super().load_checkpoint(cfg, checkpoint_path, resume, load_sch)

        if getattr(cfg.trainer, 'reset_opt_g_on_resume', False):
            self.opt_G.state = collections.defaultdict(dict)
            print('[GANcraft::load_checkpoint] Resetting opt_G.state')
        if getattr(cfg.trainer, 'reset_opt_d_on_resume', False):
            self.opt_D.state = collections.defaultdict(dict)
            print('[GANcraft::load_checkpoint] Resetting opt_D.state')

        return ret

    def test(self, data_loader, output_dir, inference_args):
        r"""Compute results images for a batch of input data and save the
        results in the specified folder.

        Args:
            data_loader (torch.utils.data.DataLoader): PyTorch dataloader.
            output_dir (str): Target location for saving the output image.
        """
        if self.cfg.trainer.model_average_config.enabled:
            net_G = self.net_G.module.averaged_model
        else:
            net_G = self.net_G.module
        net_G.eval()

        torch.cuda.empty_cache()
        with torch.no_grad():
            net_G.inference(output_dir, **vars(inference_args))