Spaces:
Runtime error
Runtime error
File size: 13,820 Bytes
f670afc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md
import collections
import os
import torch
import torch.nn as nn
from imaginaire.config import Config
from imaginaire.generators.spade import Generator as SPADEGenerator
from imaginaire.losses import (FeatureMatchingLoss, GaussianKLLoss, PerceptualLoss)
from imaginaire.model_utils.gancraft.loss import GANLoss
from imaginaire.trainers.base import BaseTrainer
from imaginaire.utils.distributed import master_only_print as print
from imaginaire.utils.io import get_checkpoint
from imaginaire.utils.misc import split_labels, to_device
from imaginaire.utils.trainer import ModelAverage, WrappedModel
from imaginaire.utils.visualization import tensor2label
class GauGANLoader(object):
r"""Manages the SPADE/GauGAN model used to generate pseudo-GTs for training GANcraft.
Args:
gaugan_cfg (Config): SPADE configuration.
"""
def __init__(self, gaugan_cfg):
print('[GauGANLoader] Loading GauGAN model.')
cfg = Config(gaugan_cfg.config)
default_checkpoint_path = os.path.basename(gaugan_cfg.config).split('.yaml')[0] + '-' + \
cfg.pretrained_weight + '.pt'
checkpoint = get_checkpoint(default_checkpoint_path, cfg.pretrained_weight)
ckpt = torch.load(checkpoint)
net_G = WrappedModel(ModelAverage(SPADEGenerator(cfg.gen, cfg.data).to('cuda')))
net_G.load_state_dict(ckpt['net_G'])
self.net_GG = net_G.module.averaged_model
self.net_GG.eval()
self.net_GG.half()
print('[GauGANLoader] GauGAN loading complete.')
def eval(self, label, z=None, style_img=None):
r"""Produce output given segmentation and other conditioning inputs.
random style will be used if neither z nor style_img is provided.
Args:
label (N x C x H x W tensor): One-hot segmentation mask of shape.
z: Style vector.
style_img: Style image.
"""
inputs = {'label': label[:, :-1].detach().half()}
random_style = True
if z is not None:
random_style = False
inputs['z'] = z.detach().half()
elif style_img is not None:
random_style = False
inputs['images'] = style_img.detach().half()
net_GG_output = self.net_GG(inputs, random_style=random_style)
return net_GG_output['fake_images']
class Trainer(BaseTrainer):
r"""Initialize GANcraft trainer.
Args:
cfg (Config): Global configuration.
net_G (obj): Generator network.
net_D (obj): Discriminator network.
opt_G (obj): Optimizer for the generator network.
opt_D (obj): Optimizer for the discriminator network.
sch_G (obj): Scheduler for the generator optimizer.
sch_D (obj): Scheduler for the discriminator optimizer.
train_data_loader (obj): Train data loader.
val_data_loader (obj): Validation data loader.
"""
def __init__(self,
cfg,
net_G,
net_D,
opt_G,
opt_D,
sch_G,
sch_D,
train_data_loader,
val_data_loader):
super(Trainer, self).__init__(cfg, net_G, net_D, opt_G,
opt_D, sch_G, sch_D,
train_data_loader, val_data_loader)
# Load the pseudo-GT network only if in training mode, else not needed.
if not self.is_inference:
self.gaugan_model = GauGANLoader(cfg.trainer.gaugan_loader)
def _init_loss(self, cfg):
r"""Initialize loss terms.
Args:
cfg (obj): Global configuration.
"""
if hasattr(cfg.trainer.loss_weight, 'gan'):
self.criteria['GAN'] = GANLoss()
self.weights['GAN'] = cfg.trainer.loss_weight.gan
if hasattr(cfg.trainer.loss_weight, 'pseudo_gan'):
self.criteria['PGAN'] = GANLoss()
self.weights['PGAN'] = cfg.trainer.loss_weight.pseudo_gan
if hasattr(cfg.trainer.loss_weight, 'l2'):
self.criteria['L2'] = nn.MSELoss()
self.weights['L2'] = cfg.trainer.loss_weight.l2
if hasattr(cfg.trainer.loss_weight, 'l1'):
self.criteria['L1'] = nn.L1Loss()
self.weights['L1'] = cfg.trainer.loss_weight.l1
if hasattr(cfg.trainer.loss_weight, 'TV')
if hasattr(cfg.trainer, 'perceptual_loss'):
self.criteria['Perceptual'] = \
PerceptualLoss(
network=cfg.trainer.perceptual_loss.mode,
layers=cfg.trainer.perceptual_loss.layers,
weights=cfg.trainer.perceptual_loss.weights)
self.weights['Perceptual'] = cfg.trainer.loss_weight.perceptual
# Setup the feature matching loss.
if hasattr(cfg.trainer.loss_weight, 'feature_matching'):
self.criteria['FeatureMatching'] = FeatureMatchingLoss()
self.weights['FeatureMatching'] = \
cfg.trainer.loss_weight.feature_matching
# Setup the Gaussian KL divergence loss.
if hasattr(cfg.trainer.loss_weight, 'kl'):
self.criteria['GaussianKL'] = GaussianKLLoss()
self.weights['GaussianKL'] = cfg.trainer.loss_weight.kl
def _start_of_epoch(self, current_epoch):
torch.cuda.empty_cache() # Prevent the first iteration from running OOM.
def _start_of_iteration(self, data, current_iteration):
r"""Model specific custom start of iteration process. We will do two
things. First, put all the data to GPU. Second, we will resize the
input so that it becomes multiple of the factor for bug-free
convolutional operations. This factor is given by the yaml file.
E.g., base = getattr(self.net_G, 'base', 32)
Args:
data (dict): The current batch.
current_iteration (int): The iteration number of the current batch.
"""
data = to_device(data, 'cuda')
# Sample camera poses and pseudo-GTs.
with torch.no_grad():
samples = self.net_G.module.sample_camera(data, self.gaugan_model.eval)
return {**data, **samples}
def gen_forward(self, data):
r"""Compute the loss for SPADE generator.
Args:
data (dict): Training data at the current iteration.
"""
net_G_output = self.net_G(data, random_style=False)
self._time_before_loss()
if 'GAN' in self.criteria or 'PGAN' in self.criteria:
incl_pseudo_real = False
if 'FeatureMatching' in self.criteria:
incl_pseudo_real = True
net_D_output = self.net_D(data, net_G_output, incl_real=False, incl_pseudo_real=incl_pseudo_real)
output_fake = net_D_output['fake_outputs'] # Choose from real_outputs and fake_outputs.
gan_loss = self.criteria['GAN'](output_fake, True, dis_update=False)
if 'GAN' in self.criteria:
self.gen_losses['GAN'] = gan_loss
if 'PGAN' in self.criteria:
self.gen_losses['PGAN'] = gan_loss
if 'FeatureMatching' in self.criteria:
self.gen_losses['FeatureMatching'] = self.criteria['FeatureMatching'](
net_D_output['fake_features'], net_D_output['pseudo_real_features'])
if 'GaussianKL' in self.criteria:
self.gen_losses['GaussianKL'] = self.criteria['GaussianKL'](net_G_output['mu'], net_G_output['logvar'])
# Perceptual loss is always between fake image and pseudo real image.
if 'Perceptual' in self.criteria:
self.gen_losses['Perceptual'] = self.criteria['Perceptual'](
net_G_output['fake_images'], data['pseudo_real_img'])
# Reconstruction loss between fake and pseudo real.
if 'L2' in self.criteria:
self.gen_losses['L2'] = self.criteria['L2'](net_G_output['fake_images'], data['pseudo_real_img'])
if 'L1' in self.criteria:
self.gen_losses['L1'] = self.criteria['L1'](net_G_output['fake_images'], data['pseudo_real_img'])
total_loss = 0
for key in self.criteria:
total_loss = total_loss + self.gen_losses[key] * self.weights[key]
self.gen_losses['total'] = total_loss
return total_loss
def dis_forward(self, data):
r"""Compute the loss for GANcraft discriminator.
Args:
data (dict): Training data at the current iteration.
"""
if 'GAN' not in self.criteria and 'PGAN' not in self.criteria:
return
with torch.no_grad():
net_G_output = self.net_G(data, random_style=False)
net_G_output['fake_images'] = net_G_output['fake_images'].detach()
incl_real = False
incl_pseudo_real = False
if 'GAN' in self.criteria:
incl_real = True
if 'PGAN' in self.criteria:
incl_pseudo_real = True
net_D_output = self.net_D(data, net_G_output, incl_real=incl_real, incl_pseudo_real=incl_pseudo_real)
self._time_before_loss()
total_loss = 0
if 'GAN' in self.criteria:
output_fake = net_D_output['fake_outputs']
output_real = net_D_output['real_outputs']
fake_loss = self.criteria['GAN'](output_fake, False, dis_update=True)
true_loss = self.criteria['GAN'](output_real, True, dis_update=True)
self.dis_losses['GAN/fake'] = fake_loss
self.dis_losses['GAN/true'] = true_loss
self.dis_losses['GAN'] = fake_loss + true_loss
total_loss = total_loss + self.dis_losses['GAN'] * self.weights['GAN']
if 'PGAN' in self.criteria:
output_fake = net_D_output['fake_outputs']
output_pseudo_real = net_D_output['pseudo_real_outputs']
fake_loss = self.criteria['PGAN'](output_fake, False, dis_update=True)
true_loss = self.criteria['PGAN'](output_pseudo_real, True, dis_update=True)
self.dis_losses['PGAN/fake'] = fake_loss
self.dis_losses['PGAN/true'] = true_loss
self.dis_losses['PGAN'] = fake_loss + true_loss
total_loss = total_loss + self.dis_losses['PGAN'] * self.weights['PGAN']
self.dis_losses['total'] = total_loss
return total_loss
def _get_visualizations(self, data):
r"""Compute visualization image.
Args:
data (dict): The current batch.
"""
with torch.no_grad():
label_lengths = self.train_data_loader.dataset.get_label_lengths()
labels = split_labels(data['label'], label_lengths)
# Get visualization of the real image and segmentation mask.
segmap = tensor2label(labels['seg_maps'], label_lengths['seg_maps'], output_normalized_tensor=True)
segmap = torch.cat([x.unsqueeze(0) for x in segmap], 0)
# Get output from GANcraft model
net_G_output_randstyle = self.net_G(data, random_style=True)
net_G_output = self.net_G(data, random_style=False)
vis_images = [data['images'], segmap, net_G_output_randstyle['fake_images'], net_G_output['fake_images']]
if 'fake_masks' in data:
# Get pseudo-GT.
labels = split_labels(data['fake_masks'], label_lengths)
segmap = tensor2label(labels['seg_maps'], label_lengths['seg_maps'], output_normalized_tensor=True)
segmap = torch.cat([x.unsqueeze(0) for x in segmap], 0)
vis_images.append(segmap)
if 'pseudo_real_img' in data:
vis_images.append(data['pseudo_real_img'])
if self.cfg.trainer.model_average_config.enabled:
net_G_model_average_output = self.net_G.module.averaged_model(data, random_style=True)
vis_images.append(net_G_model_average_output['fake_images'])
return vis_images
def load_checkpoint(self, cfg, checkpoint_path, resume=None, load_sch=True):
r"""Load network weights, optimizer parameters, scheduler parameters
from a checkpoint.
Args:
cfg (obj): Global configuration.
checkpoint_path (str): Path to the checkpoint.
resume (bool or None): If not ``None``, will determine whether or
not to load optimizers in addition to network weights.
"""
ret = super().load_checkpoint(cfg, checkpoint_path, resume, load_sch)
if getattr(cfg.trainer, 'reset_opt_g_on_resume', False):
self.opt_G.state = collections.defaultdict(dict)
print('[GANcraft::load_checkpoint] Resetting opt_G.state')
if getattr(cfg.trainer, 'reset_opt_d_on_resume', False):
self.opt_D.state = collections.defaultdict(dict)
print('[GANcraft::load_checkpoint] Resetting opt_D.state')
return ret
def test(self, data_loader, output_dir, inference_args):
r"""Compute results images for a batch of input data and save the
results in the specified folder.
Args:
data_loader (torch.utils.data.DataLoader): PyTorch dataloader.
output_dir (str): Target location for saving the output image.
"""
if self.cfg.trainer.model_average_config.enabled:
net_G = self.net_G.module.averaged_model
else:
net_G = self.net_G.module
net_G.eval()
torch.cuda.empty_cache()
with torch.no_grad():
net_G.inference(output_dir, **vars(inference_args))
|