Spaces:
Runtime error
Runtime error
File size: 32,259 Bytes
f670afc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 |
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md
"""Utils for the few shot vid2vid model."""
import random
import numpy as np
import torch
import torch.nn.functional as F
def resample(image, flow):
r"""Resamples an image using the provided flow.
Args:
image (NxCxHxW tensor) : Image to resample.
flow (Nx2xHxW tensor) : Optical flow to resample the image.
Returns:
output (NxCxHxW tensor) : Resampled image.
"""
assert flow.shape[1] == 2
b, c, h, w = image.size()
grid = get_grid(b, (h, w))
flow = torch.cat([flow[:, 0:1, :, :] / ((w - 1.0) / 2.0),
flow[:, 1:2, :, :] / ((h - 1.0) / 2.0)], dim=1)
final_grid = (grid + flow).permute(0, 2, 3, 1)
try:
output = F.grid_sample(image, final_grid, mode='bilinear',
padding_mode='border', align_corners=True)
except Exception:
output = F.grid_sample(image, final_grid, mode='bilinear',
padding_mode='border')
return output
def get_grid(batchsize, size, minval=-1.0, maxval=1.0):
r"""Get a grid ranging [-1, 1] of 2D/3D coordinates.
Args:
batchsize (int) : Batch size.
size (tuple) : (height, width) or (depth, height, width).
minval (float) : minimum value in returned grid.
maxval (float) : maximum value in returned grid.
Returns:
t_grid (4D tensor) : Grid of coordinates.
"""
if len(size) == 2:
rows, cols = size
elif len(size) == 3:
deps, rows, cols = size
else:
raise ValueError('Dimension can only be 2 or 3.')
x = torch.linspace(minval, maxval, cols)
x = x.view(1, 1, 1, cols)
x = x.expand(batchsize, 1, rows, cols)
y = torch.linspace(minval, maxval, rows)
y = y.view(1, 1, rows, 1)
y = y.expand(batchsize, 1, rows, cols)
t_grid = torch.cat([x, y], dim=1)
if len(size) == 3:
z = torch.linspace(minval, maxval, deps)
z = z.view(1, 1, deps, 1, 1)
z = z.expand(batchsize, 1, deps, rows, cols)
t_grid = t_grid.unsqueeze(2).expand(batchsize, 2, deps, rows, cols)
t_grid = torch.cat([t_grid, z], dim=1)
t_grid.requires_grad = False
return t_grid.to('cuda')
def pick_image(images, idx):
r"""Pick the image among images according to idx.
Args:
images (B x N x C x H x W tensor or list of tensors) : N images.
idx (B tensor) : indices to select.
Returns:
image (B x C x H x W) : Selected images.
"""
if type(images) == list:
return [pick_image(r, idx) for r in images]
if idx is None:
return images[:, 0]
elif type(idx) == int:
return images[:, idx]
idx = idx.long().view(-1, 1, 1, 1, 1)
image = images.gather(1, idx.expand_as(images)[:, 0:1])[:, 0]
return image
def crop_face_from_data(cfg, is_inference, data):
r"""Crop the face regions in input data and resize to the target size.
This is for training face datasets.
Args:
cfg (obj): Data configuration.
is_inference (bool): Is doing inference or not.
data (dict): Input data.
Returns:
data (dict): Cropped data.
"""
label = data['label'] if 'label' in data else None
image = data['images']
landmarks = data['landmarks-dlib68_xy']
ref_labels = data['few_shot_label'] if 'few_shot_label' in data else None
ref_images = data['few_shot_images']
ref_landmarks = data['few_shot_landmarks-dlib68_xy']
img_size = image.shape[-2:]
h, w = cfg.output_h_w.split(',')
h, w = int(h), int(w)
# When doing inference, need to sync common attributes like crop coodinates
# between different workers, so all workers crop the same region.
if 'common_attr' in data and 'crop_coords' in data['common_attr']:
# Has been computed before, reusing the previous one.
crop_coords, ref_crop_coords = data['common_attr']['crop_coords']
else:
# Is the first frame, need to compute the bbox.
ref_crop_coords, scale = get_face_bbox_for_data(
ref_landmarks[0], img_size, None, is_inference)
crop_coords, _ = get_face_bbox_for_data(
landmarks[0], img_size, scale, is_inference)
# Crop the images according to the bbox and resize them to target size.
label, image = crop_and_resize([label, image], crop_coords, (h, w))
ref_labels, ref_images = crop_and_resize([ref_labels, ref_images],
ref_crop_coords, (h, w))
data['images'], data['few_shot_images'] = image, ref_images
if label is not None:
data['label'], data['few_shot_label'] = label, ref_labels
if is_inference:
if 'common_attr' not in data:
data['common_attr'] = dict()
data['common_attr']['crop_coords'] = crop_coords, ref_crop_coords
return data
def get_face_bbox_for_data(keypoints, orig_img_size, scale, is_inference):
r"""Get the bbox coordinates for face region.
Args:
keypoints (Nx2 tensor): Facial landmarks.
orig_img_size (int tuple): Height and width of the input image size.
scale (float): When training, randomly scale the crop size for
augmentation.
is_inference (bool): Is doing inference or not.
Returns:
crop_coords (list of int): bbox for face region.
scale (float): Also returns scale to ensure reference and target frames
are croppped using the same scale.
"""
min_y, max_y = int(keypoints[:, 1].min()), int(keypoints[:, 1].max())
min_x, max_x = int(keypoints[:, 0].min()), int(keypoints[:, 0].max())
x_cen, y_cen = (min_x + max_x) // 2, (min_y + max_y) // 2
H, W = orig_img_size
w = h = (max_x - min_x)
if not is_inference:
# During training, randomly jitter the cropping position by offset
# amount for augmentation.
offset_max = 0.2
offset = [np.random.uniform(-offset_max, offset_max),
np.random.uniform(-offset_max, offset_max)]
# Also augment the crop size.
if scale is None:
scale_max = 0.2
scale = [np.random.uniform(1 - scale_max, 1 + scale_max),
np.random.uniform(1 - scale_max, 1 + scale_max)]
w *= scale[0]
h *= scale[1]
x_cen += int(offset[0] * w)
y_cen += int(offset[1] * h)
# Get the cropping coordinates.
x_cen = max(w, min(W - w, x_cen))
y_cen = max(h * 1.25, min(H - h * 0.75, y_cen))
min_x = x_cen - w
min_y = y_cen - h * 1.25
max_x = min_x + w * 2
max_y = min_y + h * 2
crop_coords = [min_y, max_y, min_x, max_x]
return [int(x) for x in crop_coords], scale
def crop_person_from_data(cfg, is_inference, data):
r"""Crop the person regions in data and resize to the target size.
This is for training full body datasets.
Args:
cfg (obj): Data configuration.
is_inference (bool): Is doing inference or not.
data (dict): Input data.
Returns:
data (dict): Cropped data.
"""
label = data['label']
image = data['images']
use_few_shot = 'few_shot_label' in data
if use_few_shot:
ref_labels = data['few_shot_label']
ref_images = data['few_shot_images']
img_size = image.shape[-2:]
output_h, output_w = cfg.output_h_w.split(',')
output_h, output_w = int(output_h), int(output_w)
output_aspect_ratio = output_w / output_h
if 'human_instance_maps' in data:
# Remove other people in the DensePose map except for the current
# target.
label = remove_other_ppl(label, data['human_instance_maps'])
if use_few_shot:
ref_labels = remove_other_ppl(ref_labels,
data['few_shot_human_instance_maps'])
# Randomly jitter the crop position by offset amount for augmentation.
offset = ref_offset = None
if not is_inference:
offset = np.random.randn(2) * 0.05
offset = np.minimum(1, np.maximum(-1, offset))
ref_offset = np.random.randn(2) * 0.02
ref_offset = np.minimum(1, np.maximum(-1, ref_offset))
# Randomly scale the crop size for augmentation.
# Final cropped size = person height * scale.
scale = ref_scale = 1.5
if not is_inference:
scale = min(2, max(1, scale + np.random.randn() * 0.05))
ref_scale = min(2, max(1, ref_scale + np.random.randn() * 0.02))
# When doing inference, need to sync common attributes like crop coodinates
# between different workers, so all workers crop the same region.
if 'common_attr' in data:
# Has been computed before, reusing the previous one.
crop_coords, ref_crop_coords = data['common_attr']['crop_coords']
else:
# Is the first frame, need to compute the bbox.
crop_coords = get_person_bbox_for_data(label, img_size, scale,
output_aspect_ratio, offset)
if use_few_shot:
ref_crop_coords = get_person_bbox_for_data(
ref_labels, img_size, ref_scale,
output_aspect_ratio, ref_offset)
else:
ref_crop_coords = None
# Crop the images according to the bbox and resize them to target size.
label = crop_and_resize(label, crop_coords, (output_h, output_w), 'nearest')
image = crop_and_resize(image, crop_coords, (output_h, output_w))
if use_few_shot:
ref_labels = crop_and_resize(ref_labels, ref_crop_coords,
(output_h, output_w), 'nearest')
ref_images = crop_and_resize(ref_images, ref_crop_coords,
(output_h, output_w))
data['label'], data['images'] = label, image
if use_few_shot:
data['few_shot_label'], data['few_shot_images'] = ref_labels, ref_images
if 'human_instance_maps' in data:
del data['human_instance_maps']
if 'few_shot_human_instance_maps' in data:
del data['few_shot_human_instance_maps']
if is_inference:
data['common_attr'] = dict()
data['common_attr']['crop_coords'] = crop_coords, ref_crop_coords
return data
def get_person_bbox_for_data(pose_map, orig_img_size, scale=1.5,
crop_aspect_ratio=1, offset=None):
r"""Get the bbox (pixel coordinates) to crop for person body region.
Args:
pose_map (NxCxHxW tensor): Input pose map.
orig_img_size (int tuple): Height and width of the input image size.
scale (float): When training, randomly scale the crop size for
augmentation.
crop_aspect_ratio (float): Output aspect ratio,
offset (list of float): Offset for crop position.
Returns:
crop_coords (list of int): bbox for body region.
"""
H, W = orig_img_size
assert pose_map.dim() == 4
nonzero_indices = (pose_map[:, :3] > 0).nonzero(as_tuple=False)
if nonzero_indices.size(0) == 0:
bw = int(H * crop_aspect_ratio // 2)
return [0, H, W // 2 - bw, W // 2 + bw]
y_indices, x_indices = nonzero_indices[:, 2], nonzero_indices[:, 3]
y_min, y_max = y_indices.min().item(), y_indices.max().item()
x_min, x_max = x_indices.min().item(), x_indices.max().item()
y_cen = int(y_min + y_max) // 2
x_cen = int(x_min + x_max) // 2
y_len = y_max - y_min
x_len = x_max - x_min
# bh, bw: half of height / width of final cropped size.
bh = int(min(H, max(H // 2, y_len * scale))) // 2
bh = max(bh, int(x_len * scale / crop_aspect_ratio) // 2)
bw = int(bh * crop_aspect_ratio)
# Randomly offset the cropped position for augmentation.
if offset is not None:
x_cen += int(offset[0] * bw)
y_cen += int(offset[1] * bh)
x_cen = max(bw, min(W - bw, x_cen))
y_cen = max(bh, min(H - bh, y_cen))
return [(y_cen - bh), (y_cen + bh), (x_cen - bw), (x_cen + bw)]
def crop_and_resize(img, coords, size=None, method='bilinear'):
r"""Crop the image using the given coordinates and resize to target size.
Args:
img (tensor or list of tensors): Input image.
coords (list of int): Pixel coordinates to crop.
size (list of int): Output size.
method (str): Interpolation method.
Returns:
img (tensor or list of tensors): Output image.
"""
if isinstance(img, list):
return [crop_and_resize(x, coords, size, method) for x in img]
if img is None:
return None
min_y, max_y, min_x, max_x = coords
img = img[:, :, min_y:max_y, min_x:max_x]
if size is not None:
if method == 'nearest':
img = F.interpolate(img, size=size, mode=method)
else:
img = F.interpolate(img, size=size, mode=method,
align_corners=False)
return img
def remove_other_ppl(labels, densemasks):
r"""Remove other people in the label map except for the current target
by looking at the id in the densemask map.
Args:
labels (NxCxHxW tensor): Input labels.
densemasks (Nx1xHxW tensor): Densemask maps.
Returns:
labels (NxCxHxW tensor): Output labels.
"""
densemasks = densemasks[:, 0:1] * 255
for idx in range(labels.shape[0]):
label, densemask = labels[idx], densemasks[idx]
# Get OpenPose and find the person id in Densemask that has the most
# overlap with the person in OpenPose result.
openpose = label[3:]
valid = (openpose[0] > 0) | (openpose[1] > 0) | (openpose[2] > 0)
dp_valid = densemask[valid.unsqueeze(0)]
if dp_valid.shape[0]:
ind = np.bincount(dp_valid).argmax()
# Remove all other people that have different indices.
label = label * (densemask == ind).float()
labels[idx] = label
return labels
def select_object(data, obj_indices=None):
r"""Select the object/person in the dict according to the object index.
Currently it's used to select the target person in OpenPose dict.
Args:
data (dict): Input data.
obj_indices (list of int): Indices for the objects to select.
Returns:
data (dict): Output data.
"""
op_keys = ['poses-openpose', 'captions-clip']
for op_key in op_keys:
if op_key in data:
for i in range(len(data[op_key])):
# data[op_key] is a list of dicts for different frames.
# people = data[op_key][i]['people']
people = data[op_key][i]
# "people" is a list of people dicts found by OpenPose. We will
# use the obj_index to get the target person from the list, and
# write it back to the dict.
# data[op_key][i]['people'] = [people[obj_indices[i]]]
if obj_indices is not None:
data[op_key][i] = people[obj_indices[i]]
else:
if op_key == 'poses-openpose':
data[op_key][i] = people[0]
else:
idx = random.randint(0, len(people) - 1)
data[op_key][i] = people[idx]
return data
def concat_frames(prev, now, n_frames):
r"""Concat previous and current frames and only keep the latest $(n_frames).
If concatenated frames are longer than $(n_frames), drop the oldest one.
Args:
prev (NxTxCxHxW tensor): Tensor for previous frames.
now (NxCxHxW tensor): Tensor for current frame.
n_frames (int): Max number of frames to store.
Returns:
result (NxTxCxHxW tensor): Updated tensor.
"""
now = now.unsqueeze(1)
if prev is None:
return now
if prev.shape[1] == n_frames:
prev = prev[:, 1:]
return torch.cat([prev, now], dim=1)
def combine_fg_mask(fg_mask, ref_fg_mask, has_fg):
r"""Get the union of target and reference foreground masks.
Args:
fg_mask (tensor): Foreground mask for target image.
ref_fg_mask (tensor): Foreground mask for reference image.
has_fg (bool): Whether the image can be classified into fg/bg.
Returns:
output (tensor or int): Combined foreground mask.
"""
return ((fg_mask > 0) | (ref_fg_mask > 0)).float() if has_fg else 1
def get_fg_mask(densepose_map, has_fg):
r"""Obtain the foreground mask for pose sequences, which only includes
the human. This is done by looking at the body part map from DensePose.
Args:
densepose_map (NxCxHxW tensor): DensePose map.
has_fg (bool): Whether data has foreground or not.
Returns:
mask (Nx1xHxW tensor): fg mask.
"""
if type(densepose_map) == list:
return [get_fg_mask(label, has_fg) for label in densepose_map]
if not has_fg or densepose_map is None:
return 1
if densepose_map.dim() == 5:
densepose_map = densepose_map[:, 0]
# Get the body part map from DensePose.
mask = densepose_map[:, 2:3]
# Make the mask slightly larger.
mask = torch.nn.MaxPool2d(15, padding=7, stride=1)(mask)
mask = (mask > -1).float()
return mask
def get_part_mask(densepose_map):
r"""Obtain mask of different body parts of humans. This is done by
looking at the body part map from DensePose.
Args:
densepose_map (NxCxHxW tensor): DensePose map.
Returns:
mask (NxKxHxW tensor): Body part mask, where K is the number of parts.
"""
# Groups of body parts. Each group contains IDs of body part labels in
# DensePose. The 9 groups here are: background, torso, hands, feet,
# upper legs, lower legs, upper arms, lower arms, head.
part_groups = [[0], [1, 2], [3, 4], [5, 6], [7, 9, 8, 10], [11, 13, 12, 14],
[15, 17, 16, 18], [19, 21, 20, 22], [23, 24]]
n_parts = len(part_groups)
need_reshape = densepose_map.dim() == 4
if need_reshape:
bo, t, h, w = densepose_map.size()
densepose_map = densepose_map.view(-1, h, w)
b, h, w = densepose_map.size()
part_map = (densepose_map / 2 + 0.5) * 24
assert (part_map >= 0).all() and (part_map < 25).all()
mask = torch.cuda.ByteTensor(b, n_parts, h, w).fill_(0)
for i in range(n_parts):
for j in part_groups[i]:
# Account for numerical errors.
mask[:, i] = mask[:, i] | (
(part_map > j - 0.1) & (part_map < j + 0.1)).byte()
if need_reshape:
mask = mask.view(bo, t, -1, h, w)
return mask.float()
def get_face_mask(densepose_map):
r"""Obtain mask of faces.
Args:
densepose_map (3D or 4D tensor): DensePose map.
Returns:
mask (3D or 4D tensor): Face mask.
"""
need_reshape = densepose_map.dim() == 4
if need_reshape:
bo, t, h, w = densepose_map.size()
densepose_map = densepose_map.view(-1, h, w)
b, h, w = densepose_map.size()
part_map = (densepose_map / 2 + 0.5) * 24
assert (part_map >= 0).all() and (part_map < 25).all()
if densepose_map.is_cuda:
mask = torch.cuda.ByteTensor(b, h, w).fill_(0)
else:
mask = torch.ByteTensor(b, h, w).fill_(0)
for j in [23, 24]:
mask = mask | ((part_map > j - 0.1) & (part_map < j + 0.1)).byte()
if need_reshape:
mask = mask.view(bo, t, h, w)
return mask.float()
def extract_valid_pose_labels(pose_map, pose_type, remove_face_labels,
do_remove=True):
r"""Remove some labels (e.g. face regions) in the pose map if necessary.
Args:
pose_map (3D, 4D or 5D tensor): Input pose map.
pose_type (str): 'both' or 'open'.
remove_face_labels (bool): Whether to remove labels for the face region.
do_remove (bool): Do remove face labels.
Returns:
pose_map (3D, 4D or 5D tensor): Output pose map.
"""
if pose_map is None:
return pose_map
if type(pose_map) == list:
return [extract_valid_pose_labels(p, pose_type, remove_face_labels,
do_remove) for p in pose_map]
orig_dim = pose_map.dim()
assert (orig_dim >= 3 and orig_dim <= 5)
if orig_dim == 3:
pose_map = pose_map.unsqueeze(0).unsqueeze(0)
elif orig_dim == 4:
pose_map = pose_map.unsqueeze(0)
if pose_type == 'open':
# If input is only openpose, remove densepose part.
pose_map = pose_map[:, :, 3:]
elif remove_face_labels and do_remove:
# Remove face part for densepose input.
densepose, openpose = pose_map[:, :, :3], pose_map[:, :, 3:]
face_mask = get_face_mask(pose_map[:, :, 2]).unsqueeze(2)
pose_map = torch.cat([densepose * (1 - face_mask) - face_mask,
openpose], dim=2)
if orig_dim == 3:
pose_map = pose_map[0, 0]
elif orig_dim == 4:
pose_map = pose_map[0]
return pose_map
def normalize_faces(keypoints, ref_keypoints,
dist_scale_x=None, dist_scale_y=None):
r"""Normalize face keypoints w.r.t. the reference face keypoints.
Args:
keypoints (Kx2 numpy array): target facial keypoints.
ref_keypoints (Kx2 numpy array): reference facial keypoints.
Returns:
keypoints (Kx2 numpy array): normalized facial keypoints.
"""
if keypoints.shape[0] == 68:
central_keypoints = [8]
add_upper_face = False
part_list = [[0, 16], [1, 15], [2, 14], [3, 13], [4, 12],
[5, 11], [6, 10], [7, 9, 8],
[17, 26], [18, 25], [19, 24], [20, 23], [21, 22],
[27], [28], [29], [30], [31, 35], [32, 34], [33],
[36, 45], [37, 44], [38, 43], [39, 42], [40, 47], [41, 46],
[48, 54], [49, 53], [50, 52], [51], [55, 59], [56, 58],
[57],
[60, 64], [61, 63], [62], [65, 67], [66]
]
if add_upper_face:
part_list += [[68, 82], [69, 81], [70, 80], [71, 79], [72, 78],
[73, 77], [74, 76, 75]]
elif keypoints.shape[0] == 126:
central_keypoints = [16]
part_list = [[i] for i in range(126)]
else:
raise ValueError('Input keypoints type not supported.')
face_cen = np.mean(keypoints[central_keypoints, :], axis=0)
ref_face_cen = np.mean(ref_keypoints[central_keypoints, :], axis=0)
def get_mean_dists(pts, face_cen):
r"""Get the mean xy distances of keypoints wrt face center."""
mean_dists_x, mean_dists_y = [], []
pts_cen = np.mean(pts, axis=0)
for p, pt in enumerate(pts):
mean_dists_x.append(np.linalg.norm(pt - pts_cen))
mean_dists_y.append(np.linalg.norm(pts_cen - face_cen))
mean_dist_x = sum(mean_dists_x) / len(mean_dists_x) + 1e-3
mean_dist_y = sum(mean_dists_y) / len(mean_dists_y) + 1e-3
return mean_dist_x, mean_dist_y
if dist_scale_x is None:
dist_scale_x, dist_scale_y = [None] * len(part_list), \
[None] * len(part_list)
for i, pts_idx in enumerate(part_list):
pts = keypoints[pts_idx]
if dist_scale_x[i] is None:
ref_pts = ref_keypoints[pts_idx]
mean_dist_x, mean_dist_y = get_mean_dists(pts, face_cen)
ref_dist_x, ref_dist_y = get_mean_dists(ref_pts, ref_face_cen)
dist_scale_x[i] = ref_dist_x / mean_dist_x
dist_scale_y[i] = ref_dist_y / mean_dist_y
pts_cen = np.mean(pts, axis=0)
pts = (pts - pts_cen) * dist_scale_x[i] + \
(pts_cen - face_cen) * dist_scale_y[i] + face_cen
keypoints[pts_idx] = pts
return keypoints, [dist_scale_x, dist_scale_y]
def crop_face_from_output(data_cfg, image, input_label, crop_smaller=0):
r"""Crop out the face region of the image (and resize if necessary to feed
into generator/discriminator).
Args:
data_cfg (obj): Data configuration.
image (NxC1xHxW tensor or list of tensors): Image to crop.
input_label (NxC2xHxW tensor): Input label map.
crop_smaller (int): Number of pixels to crop slightly smaller region.
Returns:
output (NxC1xHxW tensor or list of tensors): Cropped image.
"""
if type(image) == list:
return [crop_face_from_output(data_cfg, im, input_label, crop_smaller)
for im in image]
output = None
face_size = image.shape[-2] // 32 * 8
for i in range(input_label.size(0)):
ys, ye, xs, xe = get_face_bbox_for_output(data_cfg,
input_label[i:i + 1],
crop_smaller=crop_smaller)
output_i = F.interpolate(image[i:i + 1, -3:, ys:ye, xs:xe],
size=(face_size, face_size), mode='bilinear',
align_corners=True)
# output_i = image[i:i + 1, -3:, ys:ye, xs:xe]
output = torch.cat([output, output_i]) if i != 0 else output_i
return output
def get_face_bbox_for_output(data_cfg, pose, crop_smaller=0):
r"""Get pixel coordinates of the face bounding box.
Args:
data_cfg (obj): Data configuration.
pose (NxCxHxW tensor): Pose label map.
crop_smaller (int): Number of pixels to crop slightly smaller region.
Returns:
output (list of int): Face bbox.
"""
if pose.dim() == 3:
pose = pose.unsqueeze(0)
elif pose.dim() == 5:
pose = pose[-1, -1:]
_, _, h, w = pose.size()
use_openpose = 'pose_maps-densepose' not in data_cfg.input_labels
if use_openpose: # Use openpose face keypoints to identify face region.
for input_type in data_cfg.input_types:
if 'poses-openpose' in input_type:
num_ch = input_type['poses-openpose'].num_channels
if num_ch > 3:
face = (pose[:, -1] > 0).nonzero(as_tuple=False)
else:
raise ValueError('Not implemented yet.')
else: # Use densepose labels.
face = (pose[:, 2] > 0.9).nonzero(as_tuple=False)
ylen = xlen = h // 32 * 8
if face.size(0):
y, x = face[:, 1], face[:, 2]
ys, ye = y.min().item(), y.max().item()
xs, xe = x.min().item(), x.max().item()
if use_openpose:
xc, yc = (xs + xe) // 2, (ys * 3 + ye * 2) // 5
ylen = int((xe - xs) * 2.5)
else:
xc, yc = (xs + xe) // 2, (ys + ye) // 2
ylen = int((ye - ys) * 1.25)
ylen = xlen = min(w, max(32, ylen))
yc = max(ylen // 2, min(h - 1 - ylen // 2, yc))
xc = max(xlen // 2, min(w - 1 - xlen // 2, xc))
else:
yc = h // 4
xc = w // 2
ys, ye = yc - ylen // 2, yc + ylen // 2
xs, xe = xc - xlen // 2, xc + xlen // 2
if crop_smaller != 0: # Crop slightly smaller region inside face.
ys += crop_smaller
xs += crop_smaller
ye -= crop_smaller
xe -= crop_smaller
return [ys, ye, xs, xe]
def crop_hand_from_output(data_cfg, image, input_label):
r"""Crop out the hand region of the image.
Args:
data_cfg (obj): Data configuration.
image (NxC1xHxW tensor or list of tensors): Image to crop.
input_label (NxC2xHxW tensor): Input label map.
Returns:
output (NxC1xHxW tensor or list of tensors): Cropped image.
"""
if type(image) == list:
return [crop_hand_from_output(data_cfg, im, input_label)
for im in image]
output = None
for i in range(input_label.size(0)):
coords = get_hand_bbox_for_output(data_cfg, input_label[i:i + 1])
if coords:
for coord in coords:
ys, ye, xs, xe = coord
output_i = image[i:i + 1, -3:, ys:ye, xs:xe]
output = torch.cat([output, output_i]) \
if output is not None else output_i
return output
def get_hand_bbox_for_output(data_cfg, pose):
r"""Get coordinates of the hand bounding box.
Args:
data_cfg (obj): Data configuration.
pose (NxCxHxW tensor): Pose label map.
Returns:
output (list of int): Hand bbox.
"""
if pose.dim() == 3:
pose = pose.unsqueeze(0)
elif pose.dim() == 5:
pose = pose[-1, -1:]
_, _, h, w = pose.size()
ylen = xlen = h // 64 * 8
coords = []
colors = [[0.95, 0.5, 0.95], [0.95, 0.95, 0.5]]
for i, color in enumerate(colors):
if pose.shape[1] > 6: # Using one-hot encoding for openpose.
idx = -3 if i == 0 else -2
hand = (pose[:, idx] == 1).nonzero(as_tuple=False)
else:
raise ValueError('Not implemented yet.')
if hand.size(0):
y, x = hand[:, 1], hand[:, 2]
ys, ye, xs, xe = y.min().item(), y.max().item(), \
x.min().item(), x.max().item()
xc, yc = (xs + xe) // 2, (ys + ye) // 2
yc = max(ylen // 2, min(h - 1 - ylen // 2, yc))
xc = max(xlen // 2, min(w - 1 - xlen // 2, xc))
ys, ye, xs, xe = yc - ylen // 2, yc + ylen // 2, \
xc - xlen // 2, xc + xlen // 2
coords.append([ys, ye, xs, xe])
return coords
def pre_process_densepose(pose_cfg, pose_map, is_infer=False):
r"""Pre-process the DensePose part of input label map.
Args:
pose_cfg (obj): Pose data configuration.
pose_map (NxCxHxW tensor): Pose label map.
is_infer (bool): Is doing inference.
Returns:
pose_map (NxCxHxW tensor): Processed pose label map.
"""
part_map = pose_map[:, :, 2] * 255 # should be within [0-24]
assert (part_map >= 0).all() and (part_map < 25).all()
# Randomly drop some body part during training.
if not is_infer:
random_drop_prob = getattr(pose_cfg, 'random_drop_prob', 0)
else:
random_drop_prob = 0
if random_drop_prob > 0:
densepose_map = pose_map[:, :, :3]
for part_id in range(1, 25):
if (random.random() < random_drop_prob):
part_mask = abs(part_map - part_id) < 0.1
densepose_map[part_mask.unsqueeze(2).expand_as(
densepose_map)] = 0
pose_map[:, :, :3] = densepose_map
# Renormalize the DensePose channel from [0, 24] to [0, 255].
pose_map[:, :, 2] = pose_map[:, :, 2] * (255 / 24)
# Normalize from [0, 1] to [-1, 1].
pose_map = pose_map * 2 - 1
return pose_map
def random_roll(tensors):
r"""Randomly roll the input tensors along x and y dimensions. Also randomly
flip the tensors.
Args:
tensors (list of 4D tensors): Input tensors.
Returns:
output (list of 4D tensors): Rolled tensors.
"""
h, w = tensors[0].shape[2:]
ny = np.random.choice([np.random.randint(h//16),
h-np.random.randint(h//16)])
nx = np.random.choice([np.random.randint(w//16),
w-np.random.randint(w//16)])
flip = np.random.rand() > 0.5
return [roll(t, ny, nx, flip) for t in tensors]
def roll(t, ny, nx, flip=False):
r"""Roll and flip the tensor by specified amounts.
Args:
t (4D tensor): Input tensor.
ny (int): Amount to roll along y dimension.
nx (int): Amount to roll along x dimension.
flip (bool): Whether to flip input.
Returns:
t (4D tensor): Output tensor.
"""
t = torch.cat([t[:, :, -ny:], t[:, :, :-ny]], dim=2)
t = torch.cat([t[:, :, :, -nx:], t[:, :, :, :-nx]], dim=3)
if flip:
t = torch.flip(t, dims=[3])
return t
def detach(output):
r"""Detach tensors in the dict.
Args:
output (dict): Output dict.
Returns:
output (dict): Detached output dict.
"""
if type(output) == dict:
new_dict = dict()
for k, v in output.items():
new_dict[k] = detach(v)
return new_dict
elif type(output) == torch.Tensor:
return output.detach()
return output
|