Spaces:
Runtime error
Runtime error
File size: 8,001 Bytes
f670afc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md
from types import SimpleNamespace
import torch
from torch import nn
from .misc import ApplyNoise
from imaginaire.third_party.upfirdn2d.upfirdn2d import Blur
class ViT2dBlock(nn.Module):
r"""An abstract wrapper class that wraps a torch convolution or linear layer
with normalization and nonlinearity.
"""
def __init__(self, in_channels, out_channels, kernel_size, stride,
padding, dilation, groups, bias, padding_mode,
weight_norm_type, weight_norm_params,
activation_norm_type, activation_norm_params,
nonlinearity, inplace_nonlinearity,
apply_noise, blur, order, input_dim, clamp,
blur_kernel=(1, 3, 3, 1), output_scale=None,
init_gain=1.0):
super().__init__()
from .nonlinearity import get_nonlinearity_layer
from .weight_norm import get_weight_norm_layer
from .activation_norm import get_activation_norm_layer
self.weight_norm_type = weight_norm_type
self.stride = stride
self.clamp = clamp
self.init_gain = init_gain
# Nonlinearity layer.
if 'fused' in nonlinearity:
# Fusing nonlinearity with bias.
lr_mul = getattr(weight_norm_params, 'lr_mul', 1)
conv_before_nonlinearity = order.find('C') < order.find('A')
if conv_before_nonlinearity:
assert bias
bias = False
channel = out_channels if conv_before_nonlinearity else in_channels
nonlinearity_layer = get_nonlinearity_layer(
nonlinearity, inplace=inplace_nonlinearity,
num_channels=channel, lr_mul=lr_mul)
else:
nonlinearity_layer = get_nonlinearity_layer(
nonlinearity, inplace=inplace_nonlinearity)
# Noise injection layer.
if apply_noise:
order = order.replace('C', 'CG')
noise_layer = ApplyNoise()
else:
noise_layer = None
# Convolutional layer.
if blur:
if stride == 2:
# Blur - Conv - Noise - Activate
p = (len(blur_kernel) - 2) + (kernel_size - 1)
pad0, pad1 = (p + 1) // 2, p // 2
padding = 0
blur_layer = Blur(
blur_kernel, pad=(pad0, pad1), padding_mode=padding_mode
)
order = order.replace('C', 'BC')
elif stride == 0.5:
# Conv - Blur - Noise - Activate
padding = 0
p = (len(blur_kernel) - 2) - (kernel_size - 1)
pad0, pad1 = (p + 1) // 2 + 1, p // 2 + 1
blur_layer = Blur(
blur_kernel, pad=(pad0, pad1), padding_mode=padding_mode
)
order = order.replace('C', 'CB')
elif stride == 1:
# No blur for now
blur_layer = nn.Identity()
else:
raise NotImplementedError
else:
blur_layer = nn.Identity()
if weight_norm_params is None:
weight_norm_params = SimpleNamespace()
weight_norm = get_weight_norm_layer(
weight_norm_type, **vars(weight_norm_params))
conv_layer = weight_norm(self._get_conv_layer(
in_channels, out_channels, kernel_size, stride, padding, dilation,
groups, bias, padding_mode, input_dim))
# Normalization layer.
conv_before_norm = order.find('C') < order.find('N')
norm_channels = out_channels if conv_before_norm else in_channels
if activation_norm_params is None:
activation_norm_params = SimpleNamespace()
activation_norm_layer = get_activation_norm_layer(
norm_channels,
activation_norm_type,
input_dim,
**vars(activation_norm_params))
# Mapping from operation names to layers.
mappings = {'C': {'conv': conv_layer},
'N': {'norm': activation_norm_layer},
'A': {'nonlinearity': nonlinearity_layer}}
mappings.update({'B': {'blur': blur_layer}})
mappings.update({'G': {'noise': noise_layer}})
# All layers in order.
self.layers = nn.ModuleDict()
for op in order:
if list(mappings[op].values())[0] is not None:
self.layers.update(mappings[op])
# Whether this block expects conditional inputs.
self.conditional = \
getattr(conv_layer, 'conditional', False) or \
getattr(activation_norm_layer, 'conditional', False)
if output_scale is not None:
self.output_scale = nn.Parameter(torch.tensor(output_scale))
else:
self.register_parameter("output_scale", None)
def forward(self, x, *cond_inputs, **kw_cond_inputs):
r"""
Args:
x (tensor): Input tensor.
cond_inputs (list of tensors) : Conditional input tensors.
kw_cond_inputs (dict) : Keyword conditional inputs.
"""
for key, layer in self.layers.items():
if getattr(layer, 'conditional', False):
# Layers that require conditional inputs.
x = layer(x, *cond_inputs, **kw_cond_inputs)
else:
x = layer(x)
if self.clamp is not None and isinstance(layer, nn.Conv2d):
x.clamp_(max=self.clamp)
if key == 'conv':
if self.output_scale is not None:
x = x * self.output_scale
return x
def _get_conv_layer(self, in_channels, out_channels, kernel_size, stride,
padding, dilation, groups, bias, padding_mode,
input_dim):
# Returns the convolutional layer.
if input_dim == 0:
layer = nn.Linear(in_channels, out_channels, bias)
else:
if stride < 1: # Fractionally-strided convolution.
padding_mode = 'zeros'
assert padding == 0
layer_type = getattr(nn, f'ConvTranspose{input_dim}d')
stride = round(1 / stride)
else:
layer_type = getattr(nn, f'Conv{input_dim}d')
layer = layer_type(
in_channels, out_channels, kernel_size, stride, padding,
dilation=dilation, groups=groups, bias=bias,
padding_mode=padding_mode
)
return layer
def __repr__(self):
main_str = self._get_name() + '('
child_lines = []
for name, layer in self.layers.items():
mod_str = repr(layer)
if name == 'conv' and self.weight_norm_type != 'none' and \
self.weight_norm_type != '':
mod_str = mod_str[:-1] + \
', weight_norm={}'.format(self.weight_norm_type) + ')'
if name == 'conv' and getattr(layer, 'base_lr_mul', 1) != 1:
mod_str = mod_str[:-1] + \
', lr_mul={}'.format(layer.base_lr_mul) + ')'
mod_str = self._addindent(mod_str, 2)
child_lines.append(mod_str)
if len(child_lines) == 1:
main_str += child_lines[0]
else:
main_str += '\n ' + '\n '.join(child_lines) + '\n'
main_str += ')'
return main_str
@staticmethod
def _addindent(s_, numSpaces):
s = s_.split('\n')
# don't do anything for single-line stuff
if len(s) == 1:
return s_
first = s.pop(0)
s = [(numSpaces * ' ') + line for line in s]
s = '\n'.join(s)
s = first + '\n' + s
return s
|