File size: 14,795 Bytes
f670afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md
import numpy as np
import torch
import torch.nn.functional as F
from torchvision import transforms

from imaginaire.config import Config
from imaginaire.generators.vid2vid import Generator as Vid2VidGenerator
from imaginaire.model_utils.fs_vid2vid import resample
from imaginaire.model_utils.wc_vid2vid.render import SplatRenderer
from imaginaire.utils.trainer import (get_model_optimizer_and_scheduler,
                                      get_trainer)
from imaginaire.utils.visualization import tensor2im


class Generator(Vid2VidGenerator):
    r"""world consistent vid2vid generator constructor.

    Args:
       gen_cfg (obj): Generator definition part of the yaml config file.
       data_cfg (obj): Data definition part of the yaml config file
    """

    def __init__(self, gen_cfg, data_cfg):
        # Guidance options.
        self.guidance_cfg = gen_cfg.guidance
        self.guidance_only_with_flow = getattr(
            self.guidance_cfg, 'only_with_flow', False)
        self.guidance_partial_conv = getattr(
            self.guidance_cfg, 'partial_conv', False)

        # Splatter for guidance.
        self.renderer = SplatRenderer()
        self.reset_renderer()

        # Single image model.
        self.single_image_model = None

        # Initialize the rest same as vid2vid.
        super().__init__(gen_cfg, data_cfg)

    def _init_single_image_model(self, load_weights=True):
        r"""Load single image model, if any."""
        if self.single_image_model is None and \
                hasattr(self.gen_cfg, 'single_image_model'):
            print('Using single image model...')
            single_image_cfg = Config(self.gen_cfg.single_image_model.config)

            # Init model.
            net_G, net_D, opt_G, opt_D, sch_G, sch_D = \
                get_model_optimizer_and_scheduler(single_image_cfg)

            # Init trainer and load checkpoint.
            trainer = get_trainer(single_image_cfg, net_G, net_D,
                                  opt_G, opt_D,
                                  sch_G, sch_D,
                                  None, None)
            if load_weights:
                print('Loading single image model checkpoint')
                single_image_ckpt = self.gen_cfg.single_image_model.checkpoint
                trainer.load_checkpoint(single_image_cfg, single_image_ckpt)
                print('Loaded single image model checkpoint')

            self.single_image_model = net_G.module
            self.single_image_model_z = None

    def reset_renderer(self, is_flipped_input=False):
        r"""Reset the renderer.
        Args:
            is_flipped_input (bool): Is the input sequence left-right flipped?
        """
        self.renderer.reset()
        self.is_flipped_input = is_flipped_input
        self.renderer_num_forwards = 0
        self.single_image_model_z = None

    def renderer_update_point_cloud(self, image, point_info):
        r"""Update the renderer's color dictionary."""
        if point_info is None or len(point_info) == 0:
            return
        # print('Updating the renderer.')
        _, _, h, w = image.size()

        # Renderer expects (h, w, c) [0-255] RGB image.
        if isinstance(image, torch.Tensor):
            image = tensor2im(image.detach())[0]

        # Flip this image to correspond to SfM camera pose.
        if self.is_flipped_input:
            image = np.fliplr(image).copy()

        self.renderer.update_point_cloud(image, point_info)
        self.renderer_num_forwards += 1

    def get_guidance_images_and_masks(self, unprojection):
        r"""Do stuff."""

        resolution = 'w1024xh512'
        point_info = unprojection[resolution]

        w, h = resolution.split('x')
        w, h = int(w[1:]), int(h[1:])

        # This returns guidance image in [0-255] RGB.
        # We will convert it into Tensor repr. below.
        guidance_image, guidance_mask = self.renderer.render_image(
            point_info, w, h, return_mask=True)

        # If mask is None, there is no guidance.
        # print(np.sum(guidance_mask), guidance_mask.size)
        # if np.sum(guidance_mask) == 0:
        #     return None, point_info

        # Flip guidance image and guidance mask if needed.
        if self.is_flipped_input:
            guidance_image = np.fliplr(guidance_image).copy()
            guidance_mask = np.fliplr(guidance_mask).copy()

        # Go from (h, w, c) to (1, c, h, w).
        # Convert guidance image to Tensor.
        guidance_image = (transforms.ToTensor()(guidance_image) - 0.5) * 2
        guidance_mask = transforms.ToTensor()(guidance_mask)
        guidance = torch.cat((guidance_image, guidance_mask), dim=0)
        guidance = guidance.unsqueeze(0).cuda()

        # Save guidance at all resolutions.
        guidance_images_and_masks = guidance

        return guidance_images_and_masks, point_info

    def forward(self, data):
        r"""vid2vid generator forward.
        Args:
           data (dict) : Dictionary of input data.
        Returns:
           output (dict) : Dictionary of output data.
        """
        self._init_single_image_model()

        label = data['label']
        unprojection = data['unprojection']
        label_prev, img_prev = data['prev_labels'], data['prev_images']
        is_first_frame = img_prev is None
        z = getattr(data, 'z', None)
        bs, _, h, w = label.size()

        # Whether to warp the previous frame or not.
        flow = mask = img_warp = None
        warp_prev = self.temporal_initialized and not is_first_frame and \
            label_prev.shape[1] == self.num_frames_G - 1

        # Get guidance images and masks.
        guidance_images_and_masks, point_info = None, None
        if unprojection is not None:
            guidance_images_and_masks, point_info = \
                self.get_guidance_images_and_masks(unprojection)

        # Get SPADE conditional maps by embedding current label input.
        cond_maps_now = self.get_cond_maps(label, self.label_embedding)

        # Use single image model, if flow features are not available.
        # Guidance features are used whenever flow features are available.
        if self.single_image_model is not None and not warp_prev:
            # Get z vector for single image model.
            if self.single_image_model_z is None:
                bs = data['label'].size(0)
                z = torch.randn(bs, self.single_image_model.style_dims,
                                dtype=torch.float32).cuda()
                if data['label'].dtype == torch.float16:
                    z = z.half()
                self.single_image_model_z = z

            # Get output image.
            data['z'] = self.single_image_model_z
            self.single_image_model.eval()
            with torch.no_grad():
                output = self.single_image_model.spade_generator(data)
            img_final = output['fake_images'].detach()
            fake_images_source = 'pretrained'
        else:
            # Input to the generator will either be noise/segmentation map (for
            # first frame) or encoded previous frame (for subsequent frames).
            if is_first_frame:
                # First frame in the sequence, start from scratch.
                if self.use_segmap_as_input:
                    x_img = F.interpolate(label, size=(self.sh, self.sw))
                    x_img = self.fc(x_img)
                else:
                    if z is None:
                        z = torch.randn(bs, self.z_dim, dtype=label.dtype,
                                        device=label.get_device()).fill_(0)
                    x_img = self.fc(z).view(bs, -1, self.sh, self.sw)

                # Upsampling layers.
                for i in range(self.num_layers, self.num_downsamples_img, -1):
                    j = min(self.num_downsamples_embed, i)
                    x_img = getattr(self, 'up_' + str(i)
                                    )(x_img, *cond_maps_now[j])
                    x_img = self.upsample(x_img)
            else:
                # Not the first frame, will encode the previous frame and feed
                # to the generator.
                x_img = self.down_first(img_prev[:, -1])

                # Get label embedding for the previous frame.
                cond_maps_prev = self.get_cond_maps(label_prev[:, -1],
                                                    self.label_embedding)

                # Downsampling layers.
                for i in range(self.num_downsamples_img + 1):
                    j = min(self.num_downsamples_embed, i)
                    x_img = getattr(self, 'down_' + str(i))(x_img,
                                                            *cond_maps_prev[j])
                    if i != self.num_downsamples_img:
                        x_img = self.downsample(x_img)

                # Resnet blocks.
                j = min(self.num_downsamples_embed,
                        self.num_downsamples_img + 1)
                for i in range(self.num_res_blocks):
                    cond_maps = cond_maps_prev[j] if \
                        i < self.num_res_blocks // 2 else cond_maps_now[j]
                    x_img = getattr(self, 'res_' + str(i))(x_img, *cond_maps)

            # Optical flow warped image features.
            if warp_prev:
                # Estimate flow & mask.
                label_concat = torch.cat([label_prev.view(bs, -1, h, w),
                                          label], dim=1)
                img_prev_concat = img_prev.view(bs, -1, h, w)
                flow, mask = self.flow_network_temp(
                    label_concat, img_prev_concat)
                img_warp = resample(img_prev[:, -1], flow)
                if self.spade_combine:
                    # if using SPADE combine, integrate the warped image (and
                    # occlusion mask) into conditional inputs for SPADE.
                    img_embed = torch.cat([img_warp, mask], dim=1)
                    cond_maps_img = self.get_cond_maps(img_embed,
                                                       self.img_prev_embedding)
                    x_raw_img = None

            # Main image generation branch.
            for i in range(self.num_downsamples_img, -1, -1):
                # Get SPADE conditional inputs.
                j = min(i, self.num_downsamples_embed)
                cond_maps = cond_maps_now[j]

                # For raw output generation.
                if self.generate_raw_output:
                    if i >= self.num_multi_spade_layers - 1:
                        x_raw_img = x_img
                    if i < self.num_multi_spade_layers:
                        x_raw_img = self.one_up_conv_layer(
                            x_raw_img, cond_maps, i)

                # Add flow and guidance features.
                if warp_prev:
                    if i < self.num_multi_spade_layers:
                        # Add flow.
                        cond_maps += cond_maps_img[j]
                        # Add guidance.
                        if guidance_images_and_masks is not None:
                            cond_maps += [guidance_images_and_masks]
                    elif not self.guidance_only_with_flow:
                        # Add guidance if it is to be applied to every layer.
                        if guidance_images_and_masks is not None:
                            cond_maps += [guidance_images_and_masks]

                x_img = self.one_up_conv_layer(x_img, cond_maps, i)

            # Final conv layer.
            img_final = torch.tanh(self.conv_img(x_img))
            fake_images_source = 'in_training'

        # Update the point cloud color dict of renderer.
        self.renderer_update_point_cloud(img_final, point_info)

        output = dict()
        output['fake_images'] = img_final
        output['fake_flow_maps'] = flow
        output['fake_occlusion_masks'] = mask
        output['fake_raw_images'] = None
        output['warped_images'] = img_warp
        output['guidance_images_and_masks'] = guidance_images_and_masks
        output['fake_images_source'] = fake_images_source
        return output

    def get_cond_dims(self, num_downs=0):
        r"""Get the dimensions of conditional inputs.
        Args:
           num_downs (int) : How many downsamples at current layer.
        Returns:
           ch (list) : List of dimensions.
        """
        if not self.use_embed:
            ch = [self.num_input_channels]
        else:
            num_filters = getattr(self.emb_cfg, 'num_filters', 32)
            num_downs = min(num_downs, self.num_downsamples_embed)
            ch = [min(self.max_num_filters, num_filters * (2 ** num_downs))]
            if (num_downs < self.num_multi_spade_layers):
                ch = ch * 2
                # Also add guidance (RGB + mask = 4 channels, or 3 if partial).
                if self.guidance_partial_conv:
                    ch.append(3)
                else:
                    ch.append(4)
            elif not self.guidance_only_with_flow:
                if self.guidance_partial_conv:
                    ch.append(3)
                else:
                    ch.append(4)
        return ch

    def get_partial(self, num_downs=0):
        r"""Get if convs should be partial or not.
        Args:
           num_downs (int) : How many downsamples at current layer.
        Returns:
           partial (list) : List of boolean partial or not.
        """
        partial = [False]
        if (num_downs < self.num_multi_spade_layers):
            partial = partial * 2
            # Also add guidance (RGB + mask = 4 channels, or 3 if partial).
            if self.guidance_partial_conv:
                partial.append(True)
            else:
                partial.append(False)
        elif not self.guidance_only_with_flow:
            if self.guidance_partial_conv:
                partial.append(True)
            else:
                partial.append(False)
        return partial

    def get_cond_maps(self, label, embedder):
        r"""Get the conditional inputs.
        Args:
           label (4D tensor) : Input label tensor.
           embedder (obj) : Embedding network.
        Returns:
           cond_maps (list) : List of conditional inputs.
        """
        if not self.use_embed:
            return [label] * (self.num_layers + 1)
        embedded_label = embedder(label)
        cond_maps = [embedded_label]
        cond_maps = [[m[i] for m in cond_maps] for i in
                     range(len(cond_maps[0]))]
        return cond_maps