Spaces:
Runtime error
Runtime error
File size: 14,795 Bytes
f670afc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md
import numpy as np
import torch
import torch.nn.functional as F
from torchvision import transforms
from imaginaire.config import Config
from imaginaire.generators.vid2vid import Generator as Vid2VidGenerator
from imaginaire.model_utils.fs_vid2vid import resample
from imaginaire.model_utils.wc_vid2vid.render import SplatRenderer
from imaginaire.utils.trainer import (get_model_optimizer_and_scheduler,
get_trainer)
from imaginaire.utils.visualization import tensor2im
class Generator(Vid2VidGenerator):
r"""world consistent vid2vid generator constructor.
Args:
gen_cfg (obj): Generator definition part of the yaml config file.
data_cfg (obj): Data definition part of the yaml config file
"""
def __init__(self, gen_cfg, data_cfg):
# Guidance options.
self.guidance_cfg = gen_cfg.guidance
self.guidance_only_with_flow = getattr(
self.guidance_cfg, 'only_with_flow', False)
self.guidance_partial_conv = getattr(
self.guidance_cfg, 'partial_conv', False)
# Splatter for guidance.
self.renderer = SplatRenderer()
self.reset_renderer()
# Single image model.
self.single_image_model = None
# Initialize the rest same as vid2vid.
super().__init__(gen_cfg, data_cfg)
def _init_single_image_model(self, load_weights=True):
r"""Load single image model, if any."""
if self.single_image_model is None and \
hasattr(self.gen_cfg, 'single_image_model'):
print('Using single image model...')
single_image_cfg = Config(self.gen_cfg.single_image_model.config)
# Init model.
net_G, net_D, opt_G, opt_D, sch_G, sch_D = \
get_model_optimizer_and_scheduler(single_image_cfg)
# Init trainer and load checkpoint.
trainer = get_trainer(single_image_cfg, net_G, net_D,
opt_G, opt_D,
sch_G, sch_D,
None, None)
if load_weights:
print('Loading single image model checkpoint')
single_image_ckpt = self.gen_cfg.single_image_model.checkpoint
trainer.load_checkpoint(single_image_cfg, single_image_ckpt)
print('Loaded single image model checkpoint')
self.single_image_model = net_G.module
self.single_image_model_z = None
def reset_renderer(self, is_flipped_input=False):
r"""Reset the renderer.
Args:
is_flipped_input (bool): Is the input sequence left-right flipped?
"""
self.renderer.reset()
self.is_flipped_input = is_flipped_input
self.renderer_num_forwards = 0
self.single_image_model_z = None
def renderer_update_point_cloud(self, image, point_info):
r"""Update the renderer's color dictionary."""
if point_info is None or len(point_info) == 0:
return
# print('Updating the renderer.')
_, _, h, w = image.size()
# Renderer expects (h, w, c) [0-255] RGB image.
if isinstance(image, torch.Tensor):
image = tensor2im(image.detach())[0]
# Flip this image to correspond to SfM camera pose.
if self.is_flipped_input:
image = np.fliplr(image).copy()
self.renderer.update_point_cloud(image, point_info)
self.renderer_num_forwards += 1
def get_guidance_images_and_masks(self, unprojection):
r"""Do stuff."""
resolution = 'w1024xh512'
point_info = unprojection[resolution]
w, h = resolution.split('x')
w, h = int(w[1:]), int(h[1:])
# This returns guidance image in [0-255] RGB.
# We will convert it into Tensor repr. below.
guidance_image, guidance_mask = self.renderer.render_image(
point_info, w, h, return_mask=True)
# If mask is None, there is no guidance.
# print(np.sum(guidance_mask), guidance_mask.size)
# if np.sum(guidance_mask) == 0:
# return None, point_info
# Flip guidance image and guidance mask if needed.
if self.is_flipped_input:
guidance_image = np.fliplr(guidance_image).copy()
guidance_mask = np.fliplr(guidance_mask).copy()
# Go from (h, w, c) to (1, c, h, w).
# Convert guidance image to Tensor.
guidance_image = (transforms.ToTensor()(guidance_image) - 0.5) * 2
guidance_mask = transforms.ToTensor()(guidance_mask)
guidance = torch.cat((guidance_image, guidance_mask), dim=0)
guidance = guidance.unsqueeze(0).cuda()
# Save guidance at all resolutions.
guidance_images_and_masks = guidance
return guidance_images_and_masks, point_info
def forward(self, data):
r"""vid2vid generator forward.
Args:
data (dict) : Dictionary of input data.
Returns:
output (dict) : Dictionary of output data.
"""
self._init_single_image_model()
label = data['label']
unprojection = data['unprojection']
label_prev, img_prev = data['prev_labels'], data['prev_images']
is_first_frame = img_prev is None
z = getattr(data, 'z', None)
bs, _, h, w = label.size()
# Whether to warp the previous frame or not.
flow = mask = img_warp = None
warp_prev = self.temporal_initialized and not is_first_frame and \
label_prev.shape[1] == self.num_frames_G - 1
# Get guidance images and masks.
guidance_images_and_masks, point_info = None, None
if unprojection is not None:
guidance_images_and_masks, point_info = \
self.get_guidance_images_and_masks(unprojection)
# Get SPADE conditional maps by embedding current label input.
cond_maps_now = self.get_cond_maps(label, self.label_embedding)
# Use single image model, if flow features are not available.
# Guidance features are used whenever flow features are available.
if self.single_image_model is not None and not warp_prev:
# Get z vector for single image model.
if self.single_image_model_z is None:
bs = data['label'].size(0)
z = torch.randn(bs, self.single_image_model.style_dims,
dtype=torch.float32).cuda()
if data['label'].dtype == torch.float16:
z = z.half()
self.single_image_model_z = z
# Get output image.
data['z'] = self.single_image_model_z
self.single_image_model.eval()
with torch.no_grad():
output = self.single_image_model.spade_generator(data)
img_final = output['fake_images'].detach()
fake_images_source = 'pretrained'
else:
# Input to the generator will either be noise/segmentation map (for
# first frame) or encoded previous frame (for subsequent frames).
if is_first_frame:
# First frame in the sequence, start from scratch.
if self.use_segmap_as_input:
x_img = F.interpolate(label, size=(self.sh, self.sw))
x_img = self.fc(x_img)
else:
if z is None:
z = torch.randn(bs, self.z_dim, dtype=label.dtype,
device=label.get_device()).fill_(0)
x_img = self.fc(z).view(bs, -1, self.sh, self.sw)
# Upsampling layers.
for i in range(self.num_layers, self.num_downsamples_img, -1):
j = min(self.num_downsamples_embed, i)
x_img = getattr(self, 'up_' + str(i)
)(x_img, *cond_maps_now[j])
x_img = self.upsample(x_img)
else:
# Not the first frame, will encode the previous frame and feed
# to the generator.
x_img = self.down_first(img_prev[:, -1])
# Get label embedding for the previous frame.
cond_maps_prev = self.get_cond_maps(label_prev[:, -1],
self.label_embedding)
# Downsampling layers.
for i in range(self.num_downsamples_img + 1):
j = min(self.num_downsamples_embed, i)
x_img = getattr(self, 'down_' + str(i))(x_img,
*cond_maps_prev[j])
if i != self.num_downsamples_img:
x_img = self.downsample(x_img)
# Resnet blocks.
j = min(self.num_downsamples_embed,
self.num_downsamples_img + 1)
for i in range(self.num_res_blocks):
cond_maps = cond_maps_prev[j] if \
i < self.num_res_blocks // 2 else cond_maps_now[j]
x_img = getattr(self, 'res_' + str(i))(x_img, *cond_maps)
# Optical flow warped image features.
if warp_prev:
# Estimate flow & mask.
label_concat = torch.cat([label_prev.view(bs, -1, h, w),
label], dim=1)
img_prev_concat = img_prev.view(bs, -1, h, w)
flow, mask = self.flow_network_temp(
label_concat, img_prev_concat)
img_warp = resample(img_prev[:, -1], flow)
if self.spade_combine:
# if using SPADE combine, integrate the warped image (and
# occlusion mask) into conditional inputs for SPADE.
img_embed = torch.cat([img_warp, mask], dim=1)
cond_maps_img = self.get_cond_maps(img_embed,
self.img_prev_embedding)
x_raw_img = None
# Main image generation branch.
for i in range(self.num_downsamples_img, -1, -1):
# Get SPADE conditional inputs.
j = min(i, self.num_downsamples_embed)
cond_maps = cond_maps_now[j]
# For raw output generation.
if self.generate_raw_output:
if i >= self.num_multi_spade_layers - 1:
x_raw_img = x_img
if i < self.num_multi_spade_layers:
x_raw_img = self.one_up_conv_layer(
x_raw_img, cond_maps, i)
# Add flow and guidance features.
if warp_prev:
if i < self.num_multi_spade_layers:
# Add flow.
cond_maps += cond_maps_img[j]
# Add guidance.
if guidance_images_and_masks is not None:
cond_maps += [guidance_images_and_masks]
elif not self.guidance_only_with_flow:
# Add guidance if it is to be applied to every layer.
if guidance_images_and_masks is not None:
cond_maps += [guidance_images_and_masks]
x_img = self.one_up_conv_layer(x_img, cond_maps, i)
# Final conv layer.
img_final = torch.tanh(self.conv_img(x_img))
fake_images_source = 'in_training'
# Update the point cloud color dict of renderer.
self.renderer_update_point_cloud(img_final, point_info)
output = dict()
output['fake_images'] = img_final
output['fake_flow_maps'] = flow
output['fake_occlusion_masks'] = mask
output['fake_raw_images'] = None
output['warped_images'] = img_warp
output['guidance_images_and_masks'] = guidance_images_and_masks
output['fake_images_source'] = fake_images_source
return output
def get_cond_dims(self, num_downs=0):
r"""Get the dimensions of conditional inputs.
Args:
num_downs (int) : How many downsamples at current layer.
Returns:
ch (list) : List of dimensions.
"""
if not self.use_embed:
ch = [self.num_input_channels]
else:
num_filters = getattr(self.emb_cfg, 'num_filters', 32)
num_downs = min(num_downs, self.num_downsamples_embed)
ch = [min(self.max_num_filters, num_filters * (2 ** num_downs))]
if (num_downs < self.num_multi_spade_layers):
ch = ch * 2
# Also add guidance (RGB + mask = 4 channels, or 3 if partial).
if self.guidance_partial_conv:
ch.append(3)
else:
ch.append(4)
elif not self.guidance_only_with_flow:
if self.guidance_partial_conv:
ch.append(3)
else:
ch.append(4)
return ch
def get_partial(self, num_downs=0):
r"""Get if convs should be partial or not.
Args:
num_downs (int) : How many downsamples at current layer.
Returns:
partial (list) : List of boolean partial or not.
"""
partial = [False]
if (num_downs < self.num_multi_spade_layers):
partial = partial * 2
# Also add guidance (RGB + mask = 4 channels, or 3 if partial).
if self.guidance_partial_conv:
partial.append(True)
else:
partial.append(False)
elif not self.guidance_only_with_flow:
if self.guidance_partial_conv:
partial.append(True)
else:
partial.append(False)
return partial
def get_cond_maps(self, label, embedder):
r"""Get the conditional inputs.
Args:
label (4D tensor) : Input label tensor.
embedder (obj) : Embedding network.
Returns:
cond_maps (list) : List of conditional inputs.
"""
if not self.use_embed:
return [label] * (self.num_layers + 1)
embedded_label = embedder(label)
cond_maps = [embedded_label]
cond_maps = [[m[i] for m in cond_maps] for i in
range(len(cond_maps[0]))]
return cond_maps
|