Spaces:
Runtime error
Runtime error
File size: 15,618 Bytes
f670afc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md
from functools import partial
import numpy as np
import torch
import torch.nn as nn
from torch.nn import Upsample as NearestUpsample
from imaginaire.layers import Conv2dBlock, Res2dBlock
from imaginaire.utils.data import (get_paired_input_image_channel_number,
get_paired_input_label_channel_number)
from imaginaire.utils.distributed import master_only_print as print
class Generator(nn.Module):
r"""Pix2pixHD coarse-to-fine generator constructor.
Args:
gen_cfg (obj): Generator definition part of the yaml config file.
data_cfg (obj): Data definition part of the yaml config file.
"""
def __init__(self, gen_cfg, data_cfg):
super().__init__()
# pix2pixHD has a global generator.
global_gen_cfg = gen_cfg.global_generator
num_filters_global = getattr(global_gen_cfg, 'num_filters', 64)
# Optionally, it can have several local enhancers. They are useful
# for generating high resolution images.
local_gen_cfg = gen_cfg.local_enhancer
self.num_local_enhancers = num_local_enhancers = \
getattr(local_gen_cfg, 'num_enhancers', 1)
# By default, pix2pixHD using instance normalization.
activation_norm_type = getattr(gen_cfg, 'activation_norm_type',
'instance')
activation_norm_params = getattr(gen_cfg, 'activation_norm_params',
None)
weight_norm_type = getattr(gen_cfg, 'weight_norm_type', '')
padding_mode = getattr(gen_cfg, 'padding_mode', 'reflect')
base_conv_block = partial(Conv2dBlock,
padding_mode=padding_mode,
weight_norm_type=weight_norm_type,
activation_norm_type=activation_norm_type,
activation_norm_params=activation_norm_params,
nonlinearity='relu')
base_res_block = partial(Res2dBlock,
padding_mode=padding_mode,
weight_norm_type=weight_norm_type,
activation_norm_type=activation_norm_type,
activation_norm_params=activation_norm_params,
nonlinearity='relu', order='CNACN')
# Know what is the number of available segmentation labels.
num_input_channels = get_paired_input_label_channel_number(data_cfg)
self.concat_features = False
# Check whether label input contains specific type of data (e.g.
# instance_maps).
self.contain_instance_map = False
if data_cfg.input_labels[-1] == 'instance_maps':
self.contain_instance_map = True
# The feature encoder is only useful when the instance map is provided.
if hasattr(gen_cfg, 'enc') and self.contain_instance_map:
num_feat_channels = getattr(gen_cfg.enc, 'num_feat_channels', 0)
if num_feat_channels > 0:
num_input_channels += num_feat_channels
self.concat_features = True
self.encoder = Encoder(gen_cfg.enc, data_cfg)
# Global generator model.
global_model = GlobalGenerator(global_gen_cfg, data_cfg,
num_input_channels, padding_mode,
base_conv_block, base_res_block)
if num_local_enhancers == 0:
self.global_model = global_model
else:
# Get rid of the last layer.
global_model = global_model.model
global_model = [global_model[i]
for i in range(len(global_model) - 1)]
# global_model = [global_model[i]
# for i in range(len(global_model) - 2)]
self.global_model = nn.Sequential(*global_model)
# Local enhancer model.
for n in range(num_local_enhancers):
# num_filters = num_filters_global // (2 ** n)
num_filters = num_filters_global // (2 ** (n + 1))
output_img = (n == num_local_enhancers - 1)
setattr(self, 'enhancer_%d' % n,
LocalEnhancer(local_gen_cfg, data_cfg,
num_input_channels, num_filters,
padding_mode, base_conv_block,
base_res_block, output_img))
self.downsample = nn.AvgPool2d(3, stride=2, padding=[1, 1],
count_include_pad=False)
def forward(self, data, random_style=False):
r"""Coarse-to-fine generator forward.
Args:
data (dict) : Dictionary of input data.
random_style (bool): Always set to false for the pix2pixHD model.
Returns:
output (dict) : Dictionary of output data.
"""
label = data['label']
output = dict()
if self.concat_features:
features = self.encoder(data['images'], data['instance_maps'])
label = torch.cat([label, features], dim=1)
output['feature_maps'] = features
# Create input pyramid.
input_downsampled = [label]
for i in range(self.num_local_enhancers):
input_downsampled.append(self.downsample(input_downsampled[-1]))
# Output at coarsest level.
x = self.global_model(input_downsampled[-1])
# Coarse-to-fine: build up one layer at a time.
for n in range(self.num_local_enhancers):
input_n = input_downsampled[self.num_local_enhancers - n - 1]
enhancer = getattr(self, 'enhancer_%d' % n)
x = enhancer(x, input_n)
output['fake_images'] = x
return output
def load_pretrained_network(self, pretrained_dict):
r"""Load a pretrained network."""
# print(pretrained_dict.keys())
model_dict = self.state_dict()
print('Pretrained network has fewer layers; The following are '
'not initialized:')
not_initialized = set()
for k, v in model_dict.items():
kp = 'module.' + k.replace('global_model.', 'global_model.model.')
if kp in pretrained_dict and v.size() == pretrained_dict[kp].size():
model_dict[k] = pretrained_dict[kp]
else:
not_initialized.add('.'.join(k.split('.')[:2]))
print(sorted(not_initialized))
self.load_state_dict(model_dict)
def inference(self, data, **kwargs):
r"""Generator inference.
Args:
data (dict) : Dictionary of input data.
Returns:
fake_images (tensor): Output fake images.
file_names (str): Data file name.
"""
output = self.forward(data, **kwargs)
return output['fake_images'], data['key']['seg_maps'][0]
class LocalEnhancer(nn.Module):
r"""Local enhancer constructor. These are sub-networks that are useful
when aiming to produce high-resolution outputs.
Args:
gen_cfg (obj): local generator definition part of the yaml config
file.
data_cfg (obj): Data definition part of the yaml config file.
num_input_channels (int): Number of segmentation labels.
num_filters (int): Number of filters for the first layer.
padding_mode (str): zero | reflect | ...
base_conv_block (obj): Conv block with preset attributes.
base_res_block (obj): Residual block with preset attributes.
output_img (bool): Output is image or feature map.
"""
def __init__(self, gen_cfg, data_cfg, num_input_channels, num_filters,
padding_mode, base_conv_block, base_res_block,
output_img=False):
super(LocalEnhancer, self).__init__()
num_res_blocks = getattr(gen_cfg, 'num_res_blocks', 3)
num_img_channels = get_paired_input_image_channel_number(data_cfg)
# Downsample.
model_downsample = \
[base_conv_block(num_input_channels, num_filters, 7, padding=3),
base_conv_block(num_filters, num_filters * 2, 3, stride=2,
padding=1)]
# Residual blocks.
model_upsample = []
for i in range(num_res_blocks):
model_upsample += [base_res_block(num_filters * 2, num_filters * 2,
3, padding=1)]
# Upsample.
model_upsample += \
[NearestUpsample(scale_factor=2),
base_conv_block(num_filters * 2, num_filters, 3, padding=1)]
# Final convolution.
if output_img:
model_upsample += [Conv2dBlock(num_filters, num_img_channels, 7,
padding=3, padding_mode=padding_mode,
nonlinearity='tanh')]
self.model_downsample = nn.Sequential(*model_downsample)
self.model_upsample = nn.Sequential(*model_upsample)
def forward(self, output_coarse, input_fine):
r"""Local enhancer forward.
Args:
output_coarse (4D tensor) : Coarse output from previous layer.
input_fine (4D tensor) : Fine input from current layer.
Returns:
output (4D tensor) : Refined output.
"""
output = self.model_upsample(self.model_downsample(input_fine) + output_coarse)
return output
class GlobalGenerator(nn.Module):
r"""Coarse generator constructor. This is the main generator in the
pix2pixHD architecture.
Args:
gen_cfg (obj): Generator definition part of the yaml config file.
data_cfg (obj): Data definition part of the yaml config file.
num_input_channels (int): Number of segmentation labels.
padding_mode (str): zero | reflect | ...
base_conv_block (obj): Conv block with preset attributes.
base_res_block (obj): Residual block with preset attributes.
"""
def __init__(self, gen_cfg, data_cfg, num_input_channels, padding_mode,
base_conv_block, base_res_block):
super(GlobalGenerator, self).__init__()
num_img_channels = get_paired_input_image_channel_number(data_cfg)
num_filters = getattr(gen_cfg, 'num_filters', 64)
num_downsamples = getattr(gen_cfg, 'num_downsamples', 4)
num_res_blocks = getattr(gen_cfg, 'num_res_blocks', 9)
# First layer.
model = [base_conv_block(num_input_channels, num_filters,
kernel_size=7, padding=3)]
# Downsample.
for i in range(num_downsamples):
ch = num_filters * (2 ** i)
model += [base_conv_block(ch, ch * 2, 3, padding=1, stride=2)]
# ResNet blocks.
ch = num_filters * (2 ** num_downsamples)
for i in range(num_res_blocks):
model += [base_res_block(ch, ch, 3, padding=1)]
# Upsample.
num_upsamples = num_downsamples
for i in reversed(range(num_upsamples)):
ch = num_filters * (2 ** i)
model += \
[NearestUpsample(scale_factor=2),
base_conv_block(ch * 2, ch, 3, padding=1)]
model += [Conv2dBlock(num_filters, num_img_channels, 7, padding=3,
padding_mode=padding_mode, nonlinearity='tanh')]
self.model = nn.Sequential(*model)
def forward(self, input):
r"""Coarse-to-fine generator forward.
Args:
input (4D tensor) : Input semantic representations.
Returns:
output (4D tensor) : Synthesized image by generator.
"""
return self.model(input)
class Encoder(nn.Module):
r"""Encoder for getting region-wise features for style control.
Args:
enc_cfg (obj): Encoder definition part of the yaml config file.
data_cfg (obj): Data definition part of the yaml config file
"""
def __init__(self, enc_cfg, data_cfg):
super(Encoder, self).__init__()
label_nc = get_paired_input_label_channel_number(data_cfg)
feat_nc = enc_cfg.num_feat_channels
n_clusters = getattr(enc_cfg, 'num_clusters', 10)
for i in range(label_nc):
dummy_arr = np.zeros((n_clusters, feat_nc), dtype=np.float32)
self.register_buffer('cluster_%d' % i,
torch.tensor(dummy_arr, dtype=torch.float32))
num_img_channels = get_paired_input_image_channel_number(data_cfg)
self.num_feat_channels = getattr(enc_cfg, 'num_feat_channels', 3)
num_filters = getattr(enc_cfg, 'num_filters', 64)
num_downsamples = getattr(enc_cfg, 'num_downsamples', 4)
weight_norm_type = getattr(enc_cfg, 'weight_norm_type', 'none')
activation_norm_type = getattr(enc_cfg, 'activation_norm_type',
'instance')
padding_mode = getattr(enc_cfg, 'padding_mode', 'reflect')
base_conv_block = partial(Conv2dBlock,
padding_mode=padding_mode,
weight_norm_type=weight_norm_type,
activation_norm_type=activation_norm_type,
nonlinearity='relu')
model = [base_conv_block(num_img_channels, num_filters, 7, padding=3)]
# Downsample.
for i in range(num_downsamples):
ch = num_filters * (2**i)
model += [base_conv_block(ch, ch * 2, 3, stride=2, padding=1)]
# Upsample.
for i in reversed(range(num_downsamples)):
ch = num_filters * (2 ** i)
model += [NearestUpsample(scale_factor=2),
base_conv_block(ch * 2, ch, 3, padding=1)]
model += [Conv2dBlock(num_filters, self.num_feat_channels, 7,
padding=3, padding_mode=padding_mode,
nonlinearity='tanh')]
self.model = nn.Sequential(*model)
def forward(self, input, instance_map):
r"""Extracting region-wise features
Args:
input (4D tensor): Real RGB images.
instance_map (4D tensor): Instance label mask.
Returns:
outputs_mean (4D tensor): Instance-wise average-pooled
feature maps.
"""
outputs = self.model(input)
# Instance-wise average pooling.
outputs_mean = torch.zeros_like(outputs)
# Find all the unique labels in this batch.
inst_list = np.unique(instance_map.cpu().numpy().astype(int))
for i in inst_list:
for b in range(input.size(0)):
# Find the pixels in this instance map have this instance label.
indices = (instance_map[b:b+1] == int(i)).nonzero() # n x 4
# Scan through the feature channels.
for j in range(self.num_feat_channels):
output_ins = outputs[indices[:, 0] + b, indices[:, 1] + j,
indices[:, 2], indices[:, 3]]
mean_feat = torch.mean(output_ins).expand_as(output_ins)
outputs_mean[indices[:, 0] + b, indices[:, 1] + j,
indices[:, 2], indices[:, 3]] = mean_feat
return outputs_mean
|