Spaces:
Runtime error
Runtime error
File size: 26,331 Bytes
f670afc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 |
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md
import functools
import re
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from imaginaire.layers import Conv2dBlock, LinearBlock
from imaginaire.model_utils.gancraft.layers import AffineMod, ModLinear
import imaginaire.model_utils.gancraft.mc_utils as mc_utils
import imaginaire.model_utils.gancraft.voxlib as voxlib
from imaginaire.utils.distributed import master_only_print as print
class RenderMLP(nn.Module):
r""" MLP with affine modulation."""
def __init__(self, in_channels, style_dim, viewdir_dim, mask_dim=680,
out_channels_s=1, out_channels_c=3, hidden_channels=256,
use_seg=True):
super(RenderMLP, self).__init__()
self.use_seg = use_seg
if self.use_seg:
self.fc_m_a = nn.Linear(mask_dim, hidden_channels, bias=False)
self.fc_viewdir = None
if viewdir_dim > 0:
self.fc_viewdir = nn.Linear(viewdir_dim, hidden_channels, bias=False)
self.fc_1 = nn.Linear(in_channels, hidden_channels)
self.fc_2 = ModLinear(hidden_channels, hidden_channels, style_dim, bias=False, mod_bias=True, output_mode=True)
self.fc_3 = ModLinear(hidden_channels, hidden_channels, style_dim, bias=False, mod_bias=True, output_mode=True)
self.fc_4 = ModLinear(hidden_channels, hidden_channels, style_dim, bias=False, mod_bias=True, output_mode=True)
self.fc_sigma = nn.Linear(hidden_channels, out_channels_s)
if viewdir_dim > 0:
self.fc_5 = nn.Linear(hidden_channels, hidden_channels, bias=False)
self.mod_5 = AffineMod(hidden_channels, style_dim, mod_bias=True)
else:
self.fc_5 = ModLinear(hidden_channels, hidden_channels, style_dim,
bias=False, mod_bias=True, output_mode=True)
self.fc_6 = ModLinear(hidden_channels, hidden_channels, style_dim, bias=False, mod_bias=True, output_mode=True)
self.fc_out_c = nn.Linear(hidden_channels, out_channels_c)
self.act = nn.LeakyReLU(negative_slope=0.2)
def forward(self, x, raydir, z, m):
r""" Forward network
Args:
x (N x H x W x M x in_channels tensor): Projected features.
raydir (N x H x W x 1 x viewdir_dim tensor): Ray directions.
z (N x style_dim tensor): Style codes.
m (N x H x W x M x mask_dim tensor): One-hot segmentation maps.
"""
b, h, w, n, _ = x.size()
z = z[:, None, None, None, :]
f = self.fc_1(x)
if self.use_seg:
f = f + self.fc_m_a(m)
# Common MLP
f = self.act(f)
f = self.act(self.fc_2(f, z))
f = self.act(self.fc_3(f, z))
f = self.act(self.fc_4(f, z))
# Sigma MLP
sigma = self.fc_sigma(f)
# Color MLP
if self.fc_viewdir is not None:
f = self.fc_5(f)
f = f + self.fc_viewdir(raydir)
f = self.act(self.mod_5(f, z))
else:
f = self.act(self.fc_5(f, z))
f = self.act(self.fc_6(f, z))
c = self.fc_out_c(f)
return sigma, c
class StyleMLP(nn.Module):
r"""MLP converting style code to intermediate style representation."""
def __init__(self, style_dim, out_dim, hidden_channels=256, leaky_relu=True, num_layers=5, normalize_input=True,
output_act=True):
super(StyleMLP, self).__init__()
self.normalize_input = normalize_input
self.output_act = output_act
fc_layers = []
fc_layers.append(nn.Linear(style_dim, hidden_channels, bias=True))
for i in range(num_layers-1):
fc_layers.append(nn.Linear(hidden_channels, hidden_channels, bias=True))
self.fc_layers = nn.ModuleList(fc_layers)
self.fc_out = nn.Linear(hidden_channels, out_dim, bias=True)
if leaky_relu:
self.act = nn.LeakyReLU(negative_slope=0.2, inplace=True)
else:
self.act = functools.partial(F.relu, inplace=True)
def forward(self, z):
r""" Forward network
Args:
z (N x style_dim tensor): Style codes.
"""
if self.normalize_input:
z = F.normalize(z, p=2, dim=-1)
for fc_layer in self.fc_layers:
z = self.act(fc_layer(z))
z = self.fc_out(z)
if self.output_act:
z = self.act(z)
return z
class SKYMLP(nn.Module):
r"""MLP converting ray directions to sky features."""
def __init__(self, in_channels, style_dim, out_channels_c=3,
hidden_channels=256, leaky_relu=True):
super(SKYMLP, self).__init__()
self.fc_z_a = nn.Linear(style_dim, hidden_channels, bias=False)
self.fc1 = nn.Linear(in_channels, hidden_channels)
self.fc2 = nn.Linear(hidden_channels, hidden_channels)
self.fc3 = nn.Linear(hidden_channels, hidden_channels)
self.fc4 = nn.Linear(hidden_channels, hidden_channels)
self.fc5 = nn.Linear(hidden_channels, hidden_channels)
self.fc_out_c = nn.Linear(hidden_channels, out_channels_c)
if leaky_relu:
self.act = nn.LeakyReLU(negative_slope=0.2, inplace=True)
else:
self.act = functools.partial(F.relu, inplace=True)
def forward(self, x, z):
r"""Forward network
Args:
x (... x in_channels tensor): Ray direction embeddings.
z (... x style_dim tensor): Style codes.
"""
z = self.fc_z_a(z)
while z.dim() < x.dim():
z = z.unsqueeze(1)
y = self.act(self.fc1(x) + z)
y = self.act(self.fc2(y))
y = self.act(self.fc3(y))
y = self.act(self.fc4(y))
y = self.act(self.fc5(y))
c = self.fc_out_c(y)
return c
class RenderCNN(nn.Module):
r"""CNN converting intermediate feature map to final image."""
def __init__(self, in_channels, style_dim, hidden_channels=256,
leaky_relu=True):
super(RenderCNN, self).__init__()
self.fc_z_cond = nn.Linear(style_dim, 2 * 2 * hidden_channels)
self.conv1 = nn.Conv2d(in_channels, hidden_channels, 1, stride=1, padding=0)
self.conv2a = nn.Conv2d(hidden_channels, hidden_channels, 3, stride=1, padding=1)
self.conv2b = nn.Conv2d(hidden_channels, hidden_channels, 3, stride=1, padding=1, bias=False)
self.conv3a = nn.Conv2d(hidden_channels, hidden_channels, 3, stride=1, padding=1)
self.conv3b = nn.Conv2d(hidden_channels, hidden_channels, 3, stride=1, padding=1, bias=False)
self.conv4a = nn.Conv2d(hidden_channels, hidden_channels, 1, stride=1, padding=0)
self.conv4b = nn.Conv2d(hidden_channels, hidden_channels, 1, stride=1, padding=0)
self.conv4 = nn.Conv2d(hidden_channels, 3, 1, stride=1, padding=0)
if leaky_relu:
self.act = nn.LeakyReLU(negative_slope=0.2, inplace=True)
else:
self.act = functools.partial(F.relu, inplace=True)
def modulate(self, x, w, b):
w = w[..., None, None]
b = b[..., None, None]
return x * (w+1) + b
def forward(self, x, z):
r"""Forward network.
Args:
x (N x in_channels x H x W tensor): Intermediate feature map
z (N x style_dim tensor): Style codes.
"""
z = self.fc_z_cond(z)
adapt = torch.chunk(z, 2 * 2, dim=-1)
y = self.act(self.conv1(x))
y = y + self.conv2b(self.act(self.conv2a(y)))
y = self.act(self.modulate(y, adapt[0], adapt[1]))
y = y + self.conv3b(self.act(self.conv3a(y)))
y = self.act(self.modulate(y, adapt[2], adapt[3]))
y = y + self.conv4b(self.act(self.conv4a(y)))
y = self.act(y)
y = self.conv4(y)
return y
class StyleEncoder(nn.Module):
r"""Style Encoder constructor.
Args:
style_enc_cfg (obj): Style encoder definition file.
"""
def __init__(self, style_enc_cfg):
super(StyleEncoder, self).__init__()
input_image_channels = style_enc_cfg.input_image_channels
num_filters = style_enc_cfg.num_filters
kernel_size = style_enc_cfg.kernel_size
padding = int(np.ceil((kernel_size - 1.0) / 2))
style_dims = style_enc_cfg.style_dims
weight_norm_type = style_enc_cfg.weight_norm_type
self.no_vae = getattr(style_enc_cfg, 'no_vae', False)
activation_norm_type = 'none'
nonlinearity = 'leakyrelu'
base_conv2d_block = \
functools.partial(Conv2dBlock,
kernel_size=kernel_size,
stride=2,
padding=padding,
weight_norm_type=weight_norm_type,
activation_norm_type=activation_norm_type,
# inplace_nonlinearity=True,
nonlinearity=nonlinearity)
self.layer1 = base_conv2d_block(input_image_channels, num_filters)
self.layer2 = base_conv2d_block(num_filters * 1, num_filters * 2)
self.layer3 = base_conv2d_block(num_filters * 2, num_filters * 4)
self.layer4 = base_conv2d_block(num_filters * 4, num_filters * 8)
self.layer5 = base_conv2d_block(num_filters * 8, num_filters * 8)
self.layer6 = base_conv2d_block(num_filters * 8, num_filters * 8)
self.fc_mu = LinearBlock(num_filters * 8 * 4 * 4, style_dims)
if not self.no_vae:
self.fc_var = LinearBlock(num_filters * 8 * 4 * 4, style_dims)
def forward(self, input_x):
r"""SPADE Style Encoder forward.
Args:
input_x (N x 3 x H x W tensor): input images.
Returns:
mu (N x C tensor): Mean vectors.
logvar (N x C tensor): Log-variance vectors.
z (N x C tensor): Style code vectors.
"""
if input_x.size(2) != 256 or input_x.size(3) != 256:
input_x = F.interpolate(input_x, size=(256, 256), mode='bilinear')
x = self.layer1(input_x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.layer5(x)
x = self.layer6(x)
x = x.view(x.size(0), -1)
mu = self.fc_mu(x)
if not self.no_vae:
logvar = self.fc_var(x)
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
z = eps.mul(std) + mu
else:
z = mu
logvar = torch.zeros_like(mu)
return mu, logvar, z
class Base3DGenerator(nn.Module):
r"""Minecraft 3D generator constructor.
Args:
gen_cfg (obj): Generator definition part of the yaml config file.
data_cfg (obj): Data definition part of the yaml config file.
"""
def __init__(self, gen_cfg, data_cfg):
super(Base3DGenerator, self).__init__()
print('Base3DGenerator initialization.')
# ---------------------- Main Network ------------------------
# Exclude some of the features from positional encoding
self.pe_no_pe_feat_dim = getattr(gen_cfg, 'pe_no_pe_feat_dim', 0)
# blk_feat passes through PE
input_dim = (gen_cfg.blk_feat_dim-self.pe_no_pe_feat_dim)*(gen_cfg.pe_lvl_feat*2) + self.pe_no_pe_feat_dim
if (gen_cfg.pe_incl_orig_feat):
input_dim += (gen_cfg.blk_feat_dim-self.pe_no_pe_feat_dim)
print('[Base3DGenerator] Expected input dimensions: ', input_dim)
self.input_dim = input_dim
self.mlp_model_kwargs = gen_cfg.mlp_model_kwargs
self.pe_lvl_localcoords = getattr(gen_cfg, 'pe_lvl_localcoords', 0)
if self.pe_lvl_localcoords > 0:
self.mlp_model_kwargs['poscode_dim'] = self.pe_lvl_localcoords * 2 * 3
# Set pe_lvl_raydir=0 and pe_incl_orig_raydir=False to disable view direction input
input_dim_viewdir = 3*(gen_cfg.pe_lvl_raydir*2)
if (gen_cfg.pe_incl_orig_raydir):
input_dim_viewdir += 3
print('[Base3DGenerator] Expected viewdir input dimensions: ', input_dim_viewdir)
self.input_dim_viewdir = input_dim_viewdir
self.pe_params = [gen_cfg.pe_lvl_feat, gen_cfg.pe_incl_orig_feat,
gen_cfg.pe_lvl_raydir, gen_cfg.pe_incl_orig_raydir]
# Style input dimension
style_dims = gen_cfg.style_dims
self.style_dims = style_dims
interm_style_dims = getattr(gen_cfg, 'interm_style_dims', style_dims)
self.interm_style_dims = interm_style_dims
# ---------------------- Style MLP --------------------------
self.style_net = globals()[gen_cfg.stylenet_model](
style_dims, interm_style_dims, **gen_cfg.stylenet_model_kwargs)
# number of output channels for MLP (before blending)
final_feat_dim = getattr(gen_cfg, 'final_feat_dim', 16)
self.final_feat_dim = final_feat_dim
# ----------------------- Sky Network -------------------------
sky_input_dim_base = 3
# Dedicated sky network input dimensions
sky_input_dim = sky_input_dim_base*(gen_cfg.pe_lvl_raydir_sky*2)
if (gen_cfg.pe_incl_orig_raydir_sky):
sky_input_dim += sky_input_dim_base
print('[Base3DGenerator] Expected sky input dimensions: ', sky_input_dim)
self.pe_params_sky = [gen_cfg.pe_lvl_raydir_sky, gen_cfg.pe_incl_orig_raydir_sky]
self.sky_net = SKYMLP(sky_input_dim, style_dim=interm_style_dims, out_channels_c=final_feat_dim)
# ----------------------- Style Encoder -------------------------
style_enc_cfg = getattr(gen_cfg, 'style_enc', None)
setattr(style_enc_cfg, 'input_image_channels', 3)
setattr(style_enc_cfg, 'style_dims', gen_cfg.style_dims)
self.style_encoder = StyleEncoder(style_enc_cfg)
# ---------------------- Ray Caster -------------------------
self.num_blocks_early_stop = gen_cfg.num_blocks_early_stop
self.num_samples = gen_cfg.num_samples
self.sample_depth = gen_cfg.sample_depth
self.coarse_deterministic_sampling = getattr(gen_cfg, 'coarse_deterministic_sampling', True)
self.sample_use_box_boundaries = getattr(gen_cfg, 'sample_use_box_boundaries', True)
# ---------------------- Blender -------------------------
self.raw_noise_std = getattr(gen_cfg, 'raw_noise_std', 0.0)
self.dists_scale = getattr(gen_cfg, 'dists_scale', 0.25)
self.clip_feat_map = getattr(gen_cfg, 'clip_feat_map', True)
self.keep_sky_out = getattr(gen_cfg, 'keep_sky_out', False)
self.keep_sky_out_avgpool = getattr(gen_cfg, 'keep_sky_out_avgpool', False)
keep_sky_out_learnbg = getattr(gen_cfg, 'keep_sky_out_learnbg', False)
self.sky_global_avgpool = getattr(gen_cfg, 'sky_global_avgpool', False)
if self.keep_sky_out:
self.sky_replace_color = None
if keep_sky_out_learnbg:
sky_replace_color = torch.zeros([final_feat_dim])
sky_replace_color.requires_grad = True
self.sky_replace_color = torch.nn.Parameter(sky_replace_color)
# ---------------------- render_cnn -------------------------
self.denoiser = RenderCNN(final_feat_dim, style_dim=interm_style_dims)
self.pad = gen_cfg.pad
def get_param_groups(self, cfg_opt):
print('[Generator] get_param_groups')
if hasattr(cfg_opt, 'ignore_parameters'):
print('[Generator::get_param_groups] [x]: ignored.')
optimize_parameters = []
for k, x in self.named_parameters():
match = False
for m in cfg_opt.ignore_parameters:
if re.match(m, k) is not None:
match = True
print(' [x]', k)
break
if match is False:
print(' [v]', k)
optimize_parameters.append(x)
else:
optimize_parameters = self.parameters()
param_groups = []
param_groups.append({'params': optimize_parameters})
if hasattr(cfg_opt, 'param_groups'):
optimized_param_names = []
all_param_names = [k for k, v in self.named_parameters()]
param_groups = []
for k, v in cfg_opt.param_groups.items():
print('[Generator::get_param_groups] Adding param group from config:', k, v)
params = getattr(self, k)
named_parameters = [k]
if issubclass(type(params), nn.Module):
named_parameters = [k+'.'+pname for pname, _ in params.named_parameters()]
params = params.parameters()
param_groups.append({'params': params, **v})
optimized_param_names.extend(named_parameters)
print('[Generator::get_param_groups] UNOPTIMIZED PARAMETERS:\n ',
set(all_param_names) - set(optimized_param_names))
return param_groups
def _forward_perpix_sub(self, blk_feats, worldcoord2, raydirs_in, z, mc_masks_onehot=None):
r"""Forwarding the MLP.
Args:
blk_feats (K x C1 tensor): Sparse block features.
worldcoord2 (N x H x W x L x 3 tensor): 3D world coordinates of sampled points.
raydirs_in (N x H x W x 1 x C2 tensor or None): ray direction embeddings.
z (N x C3 tensor): Intermediate style vectors.
mc_masks_onehot (N x H x W x L x C4): One-hot segmentation maps.
Returns:
net_out_s (N x H x W x L x 1 tensor): Opacities.
net_out_c (N x H x W x L x C5 tensor): Color embeddings.
"""
proj_feature = voxlib.sparse_trilinear_interp_worldcoord(
blk_feats, self.voxel.corner_t, worldcoord2, ign_zero=True)
render_net_extra_kwargs = {}
if self.pe_lvl_localcoords > 0:
local_coords = torch.remainder(worldcoord2, 1.0) * 2.0
# Scale to [0, 2], as the positional encoding function doesn't have internal x2
local_coords[torch.isnan(local_coords)] = 0.0
local_coords = local_coords.contiguous()
poscode = voxlib.positional_encoding(local_coords, self.pe_lvl_localcoords, -1, False)
render_net_extra_kwargs['poscode'] = poscode
if self.pe_params[0] == 0 and self.pe_params[1] is True: # no PE shortcut, saves ~400MB
feature_in = proj_feature
else:
if self.pe_no_pe_feat_dim > 0:
feature_in = voxlib.positional_encoding(
proj_feature[..., :-self.pe_no_pe_feat_dim].contiguous(), self.pe_params[0], -1, self.pe_params[1])
feature_in = torch.cat([feature_in, proj_feature[..., -self.pe_no_pe_feat_dim:]], dim=-1)
else:
feature_in = voxlib.positional_encoding(
proj_feature.contiguous(), self.pe_params[0], -1, self.pe_params[1])
net_out_s, net_out_c = self.render_net(feature_in, raydirs_in, z, mc_masks_onehot, **render_net_extra_kwargs)
if self.raw_noise_std > 0.:
noise = torch.randn_like(net_out_s) * self.raw_noise_std
net_out_s = net_out_s + noise
return net_out_s, net_out_c
def _forward_perpix(self, blk_feats, voxel_id, depth2, raydirs, cam_ori_t, z):
r"""Sample points along rays, forwarding the per-point MLP and aggregate pixel features
Args:
blk_feats (K x C1 tensor): Sparse block features.
voxel_id (N x H x W x M x 1 tensor): Voxel ids from ray-voxel intersection test. M: num intersected voxels
depth2 (N x 2 x H x W x M x 1 tensor): Depths of entrance and exit points for each ray-voxel intersection.
raydirs (N x H x W x 1 x 3 tensor): The direction of each ray.
cam_ori_t (N x 3 tensor): Camera origins.
z (N x C3 tensor): Intermediate style vectors.
"""
# Generate sky_mask; PE transform on ray direction.
with torch.no_grad():
raydirs_in = raydirs.expand(-1, -1, -1, 1, -1).contiguous()
if self.pe_params[2] == 0 and self.pe_params[3] is True:
raydirs_in = raydirs_in
elif self.pe_params[2] == 0 and self.pe_params[3] is False: # Not using raydir at all
raydirs_in = None
else:
raydirs_in = voxlib.positional_encoding(raydirs_in, self.pe_params[2], -1, self.pe_params[3])
# sky_mask: when True, ray finally hits sky
sky_mask = voxel_id[:, :, :, [-1], :] == 0
# sky_only_mask: when True, ray hits nothing but sky
sky_only_mask = voxel_id[:, :, :, [0], :] == 0
with torch.no_grad():
# Random sample points along the ray
num_samples = self.num_samples + 1
if self.sample_use_box_boundaries:
num_samples = self.num_samples - self.num_blocks_early_stop
# 10 samples per ray + 4 intersections - 2
rand_depth, new_dists, new_idx = mc_utils.sample_depth_batched(
depth2, num_samples, deterministic=self.coarse_deterministic_sampling,
use_box_boundaries=self.sample_use_box_boundaries, sample_depth=self.sample_depth)
worldcoord2 = raydirs * rand_depth + cam_ori_t[:, None, None, None, :]
# Generate per-sample segmentation label
voxel_id_reduced = self.label_trans.mc2reduced(voxel_id, ign2dirt=True)
mc_masks = torch.gather(voxel_id_reduced, -2, new_idx) # B 256 256 N 1
mc_masks = mc_masks.long()
mc_masks_onehot = torch.zeros([mc_masks.size(0), mc_masks.size(1), mc_masks.size(
2), mc_masks.size(3), self.num_reduced_labels], dtype=torch.float, device=voxel_id.device)
# mc_masks_onehot: [B H W Nlayer 680]
mc_masks_onehot.scatter_(-1, mc_masks, 1.0)
net_out_s, net_out_c = self._forward_perpix_sub(blk_feats, worldcoord2, raydirs_in, z, mc_masks_onehot)
# Handle sky
sky_raydirs_in = raydirs.expand(-1, -1, -1, 1, -1).contiguous()
sky_raydirs_in = voxlib.positional_encoding(sky_raydirs_in, self.pe_params_sky[0], -1, self.pe_params_sky[1])
skynet_out_c = self.sky_net(sky_raydirs_in, z)
# Blending
weights = mc_utils.volum_rendering_relu(net_out_s, new_dists * self.dists_scale, dim=-2)
# If a ray exclusively hits the sky (no intersection with the voxels), set its weight to zero.
weights = weights * torch.logical_not(sky_only_mask).float()
total_weights_raw = torch.sum(weights, dim=-2, keepdim=True) # 256 256 1 1
total_weights = total_weights_raw
is_gnd = worldcoord2[..., [0]] <= 1.0 # Y X Z, [256, 256, 4, 3], nan < 1.0 == False
is_gnd = is_gnd.any(dim=-2, keepdim=True)
nosky_mask = torch.logical_or(torch.logical_not(sky_mask), is_gnd)
nosky_mask = nosky_mask.float()
# Avoid sky leakage
sky_weight = 1.0-total_weights
if self.keep_sky_out:
# keep_sky_out_avgpool overrides sky_replace_color
if self.sky_replace_color is None or self.keep_sky_out_avgpool:
if self.keep_sky_out_avgpool:
if hasattr(self, 'sky_avg'):
sky_avg = self.sky_avg
else:
if self.sky_global_avgpool:
sky_avg = torch.mean(skynet_out_c, dim=[1, 2], keepdim=True)
else:
skynet_out_c_nchw = skynet_out_c.permute(0, 4, 1, 2, 3).squeeze(-1)
sky_avg = F.avg_pool2d(skynet_out_c_nchw, 31, stride=1, padding=15, count_include_pad=False)
sky_avg = sky_avg.permute(0, 2, 3, 1).unsqueeze(-2)
# print(sky_avg.shape)
skynet_out_c = skynet_out_c * (1.0-nosky_mask) + sky_avg*(nosky_mask)
else:
sky_weight = sky_weight * (1.0-nosky_mask)
else:
skynet_out_c = skynet_out_c * (1.0-nosky_mask) + self.sky_replace_color*(nosky_mask)
if self.clip_feat_map is True: # intermediate feature before blending & CNN
rgbs = torch.clamp(net_out_c, -1, 1) + 1
rgbs_sky = torch.clamp(skynet_out_c, -1, 1) + 1
net_out = torch.sum(weights*rgbs, dim=-2, keepdim=True) + sky_weight * \
rgbs_sky # 576, 768, 4, 3 -> 576, 768, 3
net_out = net_out.squeeze(-2)
net_out = net_out - 1
elif self.clip_feat_map is False:
rgbs = net_out_c
rgbs_sky = skynet_out_c
net_out = torch.sum(weights*rgbs, dim=-2, keepdim=True) + sky_weight * \
rgbs_sky # 576, 768, 4, 3 -> 576, 768, 3
net_out = net_out.squeeze(-2)
elif self.clip_feat_map == 'tanh':
rgbs = torch.tanh(net_out_c)
rgbs_sky = torch.tanh(skynet_out_c)
net_out = torch.sum(weights*rgbs, dim=-2, keepdim=True) + sky_weight * \
rgbs_sky # 576, 768, 4, 3 -> 576, 768, 3
net_out = net_out.squeeze(-2)
else:
raise NotImplementedError
return net_out, new_dists, weights, total_weights_raw, rand_depth, net_out_s, net_out_c, skynet_out_c, \
nosky_mask, sky_mask, sky_only_mask, new_idx
def _forward_global(self, net_out, z):
r"""Forward the CNN
Args:
net_out (N x C5 x H x W tensor): Intermediate feature maps.
z (N x C3 tensor): Intermediate style vectors.
Returns:
fake_images (N x 3 x H x W tensor): Output image.
fake_images_raw (N x 3 x H x W tensor): Output image before TanH.
"""
fake_images = net_out.permute(0, 3, 1, 2)
fake_images_raw = self.denoiser(fake_images, z)
fake_images = torch.tanh(fake_images_raw)
return fake_images, fake_images_raw
|