Spaces:
Runtime error
Runtime error
File size: 15,469 Bytes
f670afc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md
from functools import partial
from types import SimpleNamespace
import torch
from torch import nn
from imaginaire.layers import \
(Conv2dBlock, LinearBlock, Res2dBlock, UpRes2dBlock)
class Generator(nn.Module):
r"""Generator of the improved FUNIT baseline in the COCO-FUNIT paper.
"""
def __init__(self, gen_cfg, data_cfg):
super().__init__()
self.generator = FUNITTranslator(**vars(gen_cfg))
def forward(self, data):
r"""In the FUNIT's forward pass, it generates a content embedding and
a style code from the content image, and a style code from the style
image. By mixing the content code and the style code from the content
image, we reconstruct the input image. By mixing the content code and
the style code from the style image, we have a translation output.
Args:
data (dict): Training data at the current iteration.
"""
content_a = self.generator.content_encoder(data['images_content'])
style_a = self.generator.style_encoder(data['images_content'])
style_b = self.generator.style_encoder(data['images_style'])
images_trans = self.generator.decode(content_a, style_b)
images_recon = self.generator.decode(content_a, style_a)
net_G_output = dict(images_trans=images_trans,
images_recon=images_recon)
return net_G_output
def inference(self, data, keep_original_size=True):
r"""COCO-FUNIT inference.
Args:
data (dict): Training data at the current iteration.
- images_content (tensor): Content images.
- images_style (tensor): Style images.
a2b (bool): If ``True``, translates images from domain A to B,
otherwise from B to A.
keep_original_size (bool): If ``True``, output image is resized
to the input content image size.
"""
content_a = self.generator.content_encoder(data['images_content'])
style_b = self.generator.style_encoder(data['images_style'])
output_images = self.generator.decode(content_a, style_b)
if keep_original_size:
height = data['original_h_w'][0][0]
width = data['original_h_w'][0][1]
# print('( H, W) = ( %d, %d)' % (height, width))
output_images = torch.nn.functional.interpolate(
output_images, size=[height, width])
file_names = data['key']['images_content'][0]
return output_images, file_names
class FUNITTranslator(nn.Module):
r"""
Args:
num_filters (int): Base filter numbers.
num_filters_mlp (int): Base filter number in the MLP module.
style_dims (int): Dimension of the style code.
num_res_blocks (int): Number of residual blocks at the end of the
content encoder.
num_mlp_blocks (int): Number of layers in the MLP module.
num_downsamples_content (int): Number of times we reduce
resolution by 2x2 for the content image.
num_downsamples_style (int): Number of times we reduce
resolution by 2x2 for the style image.
num_image_channels (int): Number of input image channels.
weight_norm_type (str): Type of weight normalization.
``'none'``, ``'spectral'``, or ``'weight'``.
"""
def __init__(self,
num_filters=64,
num_filters_mlp=256,
style_dims=64,
num_res_blocks=2,
num_mlp_blocks=3,
num_downsamples_style=4,
num_downsamples_content=2,
num_image_channels=3,
weight_norm_type='',
**kwargs):
super().__init__()
self.style_encoder = StyleEncoder(num_downsamples_style,
num_image_channels,
num_filters,
style_dims,
'reflect',
'none',
weight_norm_type,
'relu')
self.content_encoder = ContentEncoder(num_downsamples_content,
num_res_blocks,
num_image_channels,
num_filters,
'reflect',
'instance',
weight_norm_type,
'relu')
self.decoder = Decoder(self.content_encoder.output_dim,
num_filters_mlp,
num_image_channels,
num_downsamples_content,
'reflect',
weight_norm_type,
'relu')
self.mlp = MLP(style_dims,
num_filters_mlp,
num_filters_mlp,
num_mlp_blocks,
'none',
'relu')
def forward(self, images):
r"""Reconstruct the input image by combining the computer content and
style code.
Args:
images (tensor): Input image tensor.
"""
# reconstruct an image
content, style = self.encode(images)
images_recon = self.decode(content, style)
return images_recon
def encode(self, images):
r"""Encoder images to get their content and style codes.
Args:
images (tensor): Input image tensor.
"""
style = self.style_encoder(images)
content = self.content_encoder(images)
return content, style
def decode(self, content, style):
r"""Generate images by combining their content and style codes.
Args:
content (tensor): Content code tensor.
style (tensor): Style code tensor.
"""
style = self.mlp(style)
images = self.decoder(content, style)
return images
class Decoder(nn.Module):
r"""Improved FUNIT decoder.
Args:
num_enc_output_channels (int): Number of content feature channels.
style_channels (int): Dimension of the style code.
num_image_channels (int): Number of image channels.
num_upsamples (int): How many times we are going to apply
upsample residual block.
"""
def __init__(self,
num_enc_output_channels,
style_channels,
num_image_channels=3,
num_upsamples=4,
padding_type='reflect',
weight_norm_type='none',
nonlinearity='relu'):
super(Decoder, self).__init__()
adain_params = SimpleNamespace(
activation_norm_type='instance',
activation_norm_params=SimpleNamespace(affine=False),
cond_dims=style_channels)
base_res_block = partial(Res2dBlock,
kernel_size=3,
padding=1,
padding_mode=padding_type,
nonlinearity=nonlinearity,
activation_norm_type='adaptive',
activation_norm_params=adain_params,
weight_norm_type=weight_norm_type,
learn_shortcut=False)
base_up_res_block = partial(UpRes2dBlock,
kernel_size=5,
padding=2,
padding_mode=padding_type,
weight_norm_type=weight_norm_type,
activation_norm_type='adaptive',
activation_norm_params=adain_params,
skip_activation_norm='instance',
skip_nonlinearity=nonlinearity,
nonlinearity=nonlinearity,
hidden_channels_equal_out_channels=True,
learn_shortcut=True)
dims = num_enc_output_channels
# Residual blocks with AdaIN.
self.decoder = nn.ModuleList()
self.decoder += [base_res_block(dims, dims)]
self.decoder += [base_res_block(dims, dims)]
for _ in range(num_upsamples):
self.decoder += [base_up_res_block(dims, dims // 2)]
dims = dims // 2
self.decoder += [Conv2dBlock(dims,
num_image_channels,
kernel_size=7,
stride=1,
padding=3,
padding_mode='reflect',
nonlinearity='tanh')]
def forward(self, x, style):
r"""
Args:
x (tensor): Content embedding of the content image.
style (tensor): Style embedding of the style image.
"""
for block in self.decoder:
if getattr(block, 'conditional', False):
x = block(x, style)
else:
x = block(x)
return x
class StyleEncoder(nn.Module):
r"""Improved FUNIT Style Encoder. This is basically the same as the
original FUNIT Style Encoder.
Args:
num_downsamples (int): Number of times we reduce resolution by
2x2.
image_channels (int): Number of input image channels.
num_filters (int): Base filter number.
style_channels (int): Style code dimension.
padding_mode (str): Padding mode.
activation_norm_type (str): Type of activation normalization.
weight_norm_type (str): Type of weight normalization.
``'none'``, ``'spectral'``, or ``'weight'``.
nonlinearity (str): Nonlinearity.
"""
def __init__(self,
num_downsamples,
image_channels,
num_filters,
style_channels,
padding_mode,
activation_norm_type,
weight_norm_type,
nonlinearity):
super().__init__()
conv_params = dict(padding_mode=padding_mode,
activation_norm_type=activation_norm_type,
weight_norm_type=weight_norm_type,
nonlinearity=nonlinearity,
inplace_nonlinearity=True)
model = []
model += [Conv2dBlock(image_channels, num_filters, 7, 1, 3,
**conv_params)]
for i in range(2):
model += [Conv2dBlock(num_filters, 2 * num_filters, 4, 2, 1,
**conv_params)]
num_filters *= 2
for i in range(num_downsamples - 2):
model += [Conv2dBlock(num_filters, num_filters, 4, 2, 1,
**conv_params)]
model += [nn.AdaptiveAvgPool2d(1)]
model += [nn.Conv2d(num_filters, style_channels, 1, 1, 0)]
self.model = nn.Sequential(*model)
self.output_dim = num_filters
def forward(self, x):
r"""
Args:
x (tensor): Input image.
"""
return self.model(x)
class ContentEncoder(nn.Module):
r"""Improved FUNIT Content Encoder. This is basically the same as the
original FUNIT content encoder.
Args:
num_downsamples (int): Number of times we reduce resolution by
2x2.
num_res_blocks (int): Number of times we append residual block
after all the downsampling modules.
image_channels (int): Number of input image channels.
num_filters (int): Base filter number.
padding_mode (str): Padding mode
activation_norm_type (str): Type of activation normalization.
weight_norm_type (str): Type of weight normalization.
``'none'``, ``'spectral'``, or ``'weight'``.
nonlinearity (str): Nonlinearity.
"""
def __init__(self,
num_downsamples,
num_res_blocks,
image_channels,
num_filters,
padding_mode,
activation_norm_type,
weight_norm_type,
nonlinearity):
super().__init__()
conv_params = dict(padding_mode=padding_mode,
activation_norm_type=activation_norm_type,
weight_norm_type=weight_norm_type,
nonlinearity=nonlinearity,
inplace_nonlinearity=True,
order='CNACNA')
model = []
model += [Conv2dBlock(image_channels, num_filters, 7, 1, 3,
**conv_params)]
dims = num_filters
for i in range(num_downsamples):
model += [Conv2dBlock(dims, dims * 2, 4, 2, 1, **conv_params)]
dims *= 2
for _ in range(num_res_blocks):
model += [Res2dBlock(dims, dims, learn_shortcut=False, **conv_params)]
self.model = nn.Sequential(*model)
self.output_dim = dims
def forward(self, x):
r"""
Args:
x (tensor): Input image.
"""
return self.model(x)
class MLP(nn.Module):
r"""Improved FUNIT style decoder.
Args:
input_dim (int): Input dimension (style code dimension).
output_dim (int): Output dimension (to be fed into the AdaIN
layer).
latent_dim (int): Latent dimension.
num_layers (int): Number of layers in the MLP.
activation_norm_type (str): Activation type.
nonlinearity (str): Nonlinearity type.
"""
def __init__(self,
input_dim,
output_dim,
latent_dim,
num_layers,
activation_norm_type,
nonlinearity):
super().__init__()
model = []
model += [LinearBlock(input_dim, latent_dim,
activation_norm_type=activation_norm_type,
nonlinearity=nonlinearity)]
# changed from num_layers - 2 to num_layers - 3.
for i in range(num_layers - 3):
model += [LinearBlock(latent_dim, latent_dim,
activation_norm_type=activation_norm_type,
nonlinearity=nonlinearity)]
model += [LinearBlock(latent_dim, output_dim,
activation_norm_type=activation_norm_type,
nonlinearity=nonlinearity)]
self.model = nn.Sequential(*model)
def forward(self, x):
r"""
Args:
x (tensor): Input tensor.
"""
return self.model(x.view(x.size(0), -1))
|